【題目】有一水庫大壩的橫截面是梯形ABCD,ADBCEF為水庫的水面,點EDC上,某課題小組在老師的帶領(lǐng)下想測量水的深度,他們測得背水坡AB的長為12米,迎水坡上DE的長為2米,∠BAD=135°,ADC=120°,求水深.(精確到0.1米,=1.41,=1.73)

【答案】水深約為6.7

【解析】

分別過A、DAMBCM,DGBCG.利用AB的長為12,BAD=135°可求得梯形的高的長度.這兩條高相等,再利用DE長構(gòu)造一直角三角形,求得DE的垂直距離,進而求得水深.

分別作AMBCM,DGBCG.過EEHDGH,則四邊形AMGD為矩形.

ADBC,BAD=135°,ADC=120°.

∴∠B=45°,DCG=60°,GDC=30°.

RtABM中,

AM=ABsinB=12×=6,

DG=6

RtDHE中,

DH=DEcosEDH=2×=,

HG=DG-DH=6-≈6×1.41-1.73≈6.7.

答:水深約為6.7米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB=4cm,BC=6cm,點E、F、G 分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點G的運動速度為2cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).

(1)若點F的運動速度為2 cm/s.

t=______s時,四邊形EBFB′為正方形;

若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;

(2)若存在實數(shù)t,使得點B′與點O重合,求出t的值;并求出點F的運動速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形AOBC的頂點A,C在反比例函數(shù)圖象上,OABC,上底邊OA在直線y=x上,下底邊BCy軸于B0,﹣4),則四邊形AOBC的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當10≤t≤30時,Rt之間的關(guān)系式;

(2)求溫度在30℃時電阻R的值;并求出t≥30時,Rt之間的關(guān)系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù) 的圖象于點B,點Cx軸上一點,且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點FDA延長線的一點,AC平分∠FAB交⊙O于點C,過點CCEDF,垂足為點E

(1)求證:CE是⊙O的切線;

(2)AE=1,CE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,ABCD,垂足為M,且AB=8cm,則AC的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB 為半⊙O 的直徑,弦 AC 的延長線與過點 B 的切線交于點 D,E BD的中點,連接 CE.

(1)求證:CE O 的切線;

(2)過點 C CF AB ,垂足為點 F,AC=5,CF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,,S10,則S1+S2+S3+…+S10=

查看答案和解析>>

同步練習冊答案