【題目】如圖,AB∥CD∥EF,CD交AF于G,
(1)如圖1,若CF平分∠AFE,∠A=70°,求∠C;
(2)如圖2,請寫出∠A,∠C和∠AFC的數(shù)量關(guān)系并說明理由.
【答案】(1)∠C=35°;(2)∠A=∠C+∠AFC. 理由見解析.
【解析】
(1)由平行線的性質(zhì)可求出∠AFE=70°,由角平分線的定義可求∠CFE=35°,然后再根據(jù)平行線的性質(zhì)即可求出求∠C;
(1)由AB∥CD,可得∠DGF=∠A,由三角形外角的性質(zhì)可得∠DGF=∠C+∠AFC,進而可求出∠A,∠C和∠AFC的數(shù)量關(guān)系.
(1)∵AB∥EF, ∠A=70°,
∴∠AFE=∠A=70°,
∵CF平分∠AFE,
∴∠CFE=∠AFE=35°.
∵CD∥EF,
∴∠C=∠CFE=35°;
(2)∵AB∥CD,
∴∠DGF=∠A.
∵∠DGF是△GCF的外角,
∴∠DGF=∠C+∠AFC,
∴∠A=∠C+∠AFC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個數(shù)的平方等于,記為,這個數(shù)叫做虛數(shù)單位.那么和我們所學(xué)的實數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為(為實數(shù)),叫這個復(fù)數(shù)的實部, 叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.
例如計算:
(1)填空: =_________, =____________.
(2)填空:①_________; ②_________ .
(3)若兩個復(fù)數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:已知, ,( 為實數(shù)),求的值.
(4)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成的形式.
(5)解方程:x2 - 2x +4 = 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE平分∠BCD與AB交于點E,BF平分∠ABC與AD交于點F,若,EF=4,則CD長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,今年三月份的電腦售價比去年同期每臺降價1000元.如果賣出相同數(shù)量的電腦,去年的銷售額為10萬元,那么今年的銷售額只有8萬元.
(1)今年三月份甲種型號電腦每臺的售價為多少元?
(2)為增加收入,電腦公司決定經(jīng)銷乙種型號電腦.已知甲種型號電腦每臺的進價為3500元,乙種型號電腦每臺的進價為3000元,公司預(yù)計用不多于5萬元且不少于4.8萬元的資金購進這兩種型號的電腦共15臺,則有幾種進貨方案?
(3)如果乙種型號電腦每臺的售價為3800元,為打開乙種型號電腦的銷路,公司決定每售出一臺乙種型號電腦,返還顧客現(xiàn)金元,要使(2)中所有方案的獲利相同,那么的值應(yīng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達小島C處,將人員撤離到碼頭A張東方向的碼頭B,測得小島C位于碼頭B西北方向,求碼頭B與小島C的距離(結(jié)果精確到0.1海里).【參考數(shù)據(jù):sin23°=0.39,cos23°=0.92,tan23°=0.42, =1.41】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=4,BC=6,∠ABC=60°,點P為ABCD內(nèi)一點,點Q在BC邊上,則PA+PD+PQ的最小值為( )
A.B.6+2C.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與點B,C重合),過點C作CN⊥DM交AB于點N,連結(jié)OM、ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,則S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正確結(jié)論是_____;(只填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com