【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關(guān)系式;

(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.

【答案】(1)n=m2;(2)P的半徑為2;(3)≤m≤4或﹣4≤m≤﹣;7≤n≤8.

【解析】

1)將點Pm,n)代入拋物線解析式y=x2可得mn之間的關(guān)系式;

2)根據(jù)⊙P與兩坐標軸都相切知|m|=m2 ,解之可得m的值,但要根據(jù)實際情況取舍,從而得出⊙P的半徑;

3)作PKMN于點K,連接PM,分別求出MN=0MN=2PK的值,據(jù)此可得PK=m2的范圍是7m28,解不等式即可.

解:(1)∵點Pmn)在拋物線y上,

nm2;

2)當點Pm, m2)在第一象限時,

由⊙P與兩坐標軸都相切知mm2,

解得:m0(舍)或m2

∴⊙P的半徑為2;

當點Pm,m2)在第三象限時,

由⊙P與兩坐標軸都相切知﹣mm2,

解得:m0m=﹣2,

∴⊙P的半徑為2

3)如圖,作PKMN于點K,連接PM

MN2時,MKMN,

PM8,

PK7

MN0時,PK8,

∴7≤PK≤8,即7≤n≤8,

nm2,

∴7≤m2≤8,

解得:≤m≤4或﹣4≤m≤﹣

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)的圖象交于點A(﹣1,m),B(n,﹣1).

(1)求反比例函數(shù)的解析式;

(2)y1y時,直接寫出x的取值范圍;

(3)求△AOB的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進價分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)解方程:x2+8x﹣9=0(用配方法)

(2)解方程:3(x﹣2)x=4x﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的一元二次方程 有實數(shù)根.

(1)求的取值范圍;

(2)若 兩個實數(shù)根分別為 ,且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫出當y4x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=nmn),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2n2)π,則=_____

查看答案和解析>>

同步練習冊答案