【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.
(1)寫出m與n之間的關(guān)系式;
(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;
(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.
【答案】(1)n=m2;(2)⊙P的半徑為2;(3)≤m≤4或﹣4≤m≤﹣;7≤n≤8.
【解析】
(1)將點P(m,n)代入拋物線解析式y=x2可得m與n之間的關(guān)系式;
(2)根據(jù)⊙P與兩坐標軸都相切知|m|=m2 ,解之可得m的值,但要根據(jù)實際情況取舍,從而得出⊙P的半徑;
(3)作PK⊥MN于點K,連接PM,分別求出MN=0和MN=2時PK的值,據(jù)此可得PK=m2的范圍是7≤m2≤8,解不等式即可.
解:(1)∵點P(m,n)在拋物線y=上,
∴n=m2;
(2)當點P(m, m2)在第一象限時,
由⊙P與兩坐標軸都相切知m=m2,
解得:m=0(舍)或m=2,
∴⊙P的半徑為2;
當點P(m,m2)在第三象限時,
由⊙P與兩坐標軸都相切知﹣m=m2,
解得:m=0或m=﹣2,
∴⊙P的半徑為2;
(3)如圖,作PK⊥MN于點K,連接PM,
當MN=2時,MK=MN=,
∵PM=8,
則PK===7,
當MN=0時,PK=8,
∴7≤PK≤8,即7≤n≤8,
∵n=m2,
∴7≤m2≤8,
解得:≤m≤4或﹣4≤m≤﹣.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)的圖象交于點A(﹣1,m),點B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當y1>y時,直接寫出x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.
(1)求證:△ABE∽△DEF.
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.
(1)求甲、乙兩種蘋果的進價分別是每千克多少元?
(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)y=(k≠0)的圖象上.
(1)求反比例函數(shù)的解析式;
(2)直接寫出當y<4時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com