【題目】一農(nóng)民朋友帶了若干千克的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用.按市場售出一些后,又降價出售.售出土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系如圖所示,結(jié)合圖像回答下列問題:
(1)農(nóng)民自帶的零錢是多少?
(2)降價前他每千克土豆出售的價格是多少?
(3)降價后他按每千克0.4元將剩余的土豆售完,這時他手中的錢(含備用的錢)是26元,問他一共帶了多少千克的土豆?
【答案】(1)5元;(2)0.5元;(3)45千克土豆
【解析】
(1)由圖象可知,當(dāng)x=0時,y=5,所以農(nóng)民自帶的零錢是5元;
(2)方法一:可設(shè)降價前每千克土豆價格為k元,則可列出農(nóng)民手中錢y與所售土豆千克數(shù)x之間的函數(shù)關(guān)系式,由圖象知,當(dāng)x=30時,y的值,從而求出k的值;
方法二:由圖可知30千克土豆賣了20-5=15元,由此列式即可得出答案;
(3)方法一:可設(shè)降價后農(nóng)民手中錢y與所售土豆千克數(shù)x之間的函數(shù)關(guān)系式,當(dāng)x=30時,y=20,代入即可求出解析式,代入y=26即可得出答案;
方法二:由圖象可知0.4元/千克一共賣了26-20=6千克,即可求出此時賣了6÷0.4=15千克,再加上之前的15千克即為一共帶的土豆的重量.
解:(1)由圖象可知,當(dāng)時,,
答:農(nóng)民自帶的零錢是5元;
(2)方法一:
設(shè)降價前每千克土豆價格為元,
則農(nóng)民手中錢與所售土豆千克數(shù)之間的函數(shù)關(guān)系式為:,
∵當(dāng)時,,
∴,
解得.
答:降價前每千克土豆價格為0.5元。
方法二:(元)
答:降價前每千克土豆價格為0.5元。
(3)方法一:設(shè)降價后農(nóng)民手中錢與所售土豆千克數(shù)之間的函數(shù)關(guān)系為.
∵當(dāng)時,, ∴,
當(dāng)時,,即,
解得:.
答:農(nóng)民一共帶了45千克土豆.
方法二:(千克)
答:農(nóng)民一共帶了45千克土豆 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙o的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是( )
A.7 B.17 C.7或17 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)45件A商品和20件B商品共用了800元,購進(jìn)60件A商品和35件B商品共用了1100元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購進(jìn)B商品的件數(shù)比購進(jìn)A商品件數(shù)的2倍少4件,如果需要購進(jìn)A、B兩種商品的總件數(shù)不少于32件,且該商店購進(jìn)A、B兩種商品的總費(fèi)用不超過296元,那么該商店有幾種購進(jìn)方案?并寫出所有可能的購進(jìn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=6cm,CD=8cm,BC=BD=10cm,點(diǎn)P由B出發(fā)沿BD方向勻速運(yùn)動,速度為
1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運(yùn)動,速度為1cm/s,交BD于Q,連接PE.若設(shè)運(yùn)動時間為t(s)(0<t<5).解答下列問題:
(1)當(dāng)t為何值時,PE∥AB?
(2)是否存在某一時刻t,使S△DEQ=?若存在,求出此時t的值;若不存在,說明理由.
(3)如圖2連接PF,在上述運(yùn)動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E,F分別是邊AB,CD的中點(diǎn),(1)求證:△CFB≌△AED;
(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上一動點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長AF交CD于點(diǎn)G,AB=3,AD=4.
(1)如圖,當(dāng)∠DAG=30° 時,求BE的長;
(2)如圖,當(dāng)點(diǎn)E是BC的中點(diǎn)時,求線段GC的長;
(3)如圖,點(diǎn)E在運(yùn)動過程中,當(dāng)△CFE的周長最小時,直接寫出BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在AB邊上,沿CE折疊矩形ABCD,使點(diǎn)B落在AD邊上的點(diǎn)F處,若AB=4,BC=5,則tan∠AFE的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC,BD=BC,∠ABC=900;
(1)畫出的高CE;;
(2)請寫出圖中的一對全等三角形(不添加任何字母),并說明理由;
(3)若,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com