【題目】若am=8,an=16,則am+n的值為(
A.32
B.64
C.128
D.256

【答案】C
【解析】解:∵am=8,an=16, ∴am+n=am×an=8×16=128.
故選:C.
【考點精析】關(guān)于本題考查的同底數(shù)冪的乘法,需要了解同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù))才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A= ∠B= ∠C; ④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能確定△ABC為直角三角形的條件有( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)如圖①,△ABC中,點D、E在邊BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度數(shù);②∠DAE的度數(shù).
(2)如圖②,若把(1)中的條件“AD⊥BC”變成“F為AE延長線上一點,且FD⊥BC”,其他條件不變,求出∠DFE的度數(shù).
(3)在△ABC中,AE平分∠BAC,若F為EA延長線上一點,F(xiàn)D⊥BC,且∠C=α,∠B=β(β>α),試猜想∠DFE的度數(shù)(用α,β表示),請自己作出對應(yīng)圖形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x24xm0有兩個相等的實數(shù)根,則m的值是(

A.1B.2C.4D.±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,現(xiàn)有一張三角形ABC紙片,沿BC邊上的高AE所在的直線翻折,使得點C與BC邊上的點D重合.

(1)填空:△ADC是三角形;
(2)若AB=15,AC=13,BC=14,求BC邊上的高AE的長;
(3)如圖②,若∠DAC=90°,試猜想:BC、BD、AE之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組):
(1)
(2)﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.

(1)求證:AEH∽△ABC;

(2)求這個正方形的邊長與面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)了反比例函數(shù),在生活中,兩個變量間具有反比例函數(shù)關(guān)系的實例有許多,例如:在路程s一定時,平均速度v是運行時間t的反比例函數(shù),其函數(shù)關(guān)系式可以寫為:v= (s為常數(shù),s≠0).
請你仿照上例,再舉一個在日常生活、學(xué)習(xí)中,兩個變量間具有反比例函數(shù)關(guān)系的實例:;并寫出這兩個變量之間的函數(shù)解析式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地計劃用120~180天(含120與180天)的時間建設(shè)一項水利工程,工程需要運送的土石方總量為360萬立方米.

(1)寫出運輸公司完成任務(wù)所需的時間y(單位:天)與平均每天的工作量x(單位:萬立方米)之間的函數(shù)關(guān)系式,并給出自變量x的取值范圍;

(2)由于工程進(jìn)度的需要,實際平均每天運送土石方比原計劃多5000立方米,工期比原計劃減少了24,原計劃和實際平均每天運送土石方各是多少萬立方米?

查看答案和解析>>

同步練習(xí)冊答案