如圖,DE是△ABC的中位線,延長(zhǎng)DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( )

A.1:3
B.2:3
C.1:4
D.2:5
【答案】分析:先利用SAS證明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE為中位線,判斷△ADE∽△ABC,且相似比為1:2,利用相似三角形的面積比等于相似比,得到S△ADE:S△ABC=1:4,則S△ADE:S四邊形BCED=1:3,進(jìn)而得出S△CEF:S四邊形BCED=1:3.
解答:解:∵DE為△ABC的中位線,
∴AE=CE.
在△ADE與△CFE中,
,
∴△ADE≌△CFE(SAS),
∴S△ADE=S△CFE
∵DE為△ABC的中位線,
∴△ADE∽△ABC,且相似比為1:2,
∴S△ADE:S△ABC=1:4,
∵S△ADE+S四邊形BCED=S△ABC,
∴S△ADE:S四邊形BCED=1:3,
∴S△CEF:S四邊形BCED=1:3.
故選A.
點(diǎn)評(píng):本題考查了全等三角形、相似三角形的判定與性質(zhì),三角形中位線定理.關(guān)鍵是利用中位線判斷相似三角形及相似比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,DE是△ABC的中位線,若AD=4,AE=5,BC=12,則△ADE的周長(zhǎng)為( 。
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,若BC=6,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,則△ADE和四邊形BCED的面積之比為( 。
A、1:2B、1:3C、1:4D、以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,F(xiàn)G是梯形BCED的中位線,若BC=16cm,則FG的長(zhǎng)是( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,DE是△ABC的中位線,點(diǎn)P是DE的中點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,那么S△DPQ:S△ABC=
1:24

查看答案和解析>>

同步練習(xí)冊(cè)答案