(1)如圖所示,如果你的位置在點(diǎn)A,你能看到后面那座高大的建筑物嗎?為什么?

(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當(dāng)你至少與M樓相距多少m時(shí),才能看到后面的N樓?

(1)不能,理由見解析;(2).

解析試題分析:(1)連接點(diǎn)A與M樓的頂點(diǎn),則可得出能否看到后面那座高大的建筑物;
(2)構(gòu)造直角三角形,設(shè)AM=x,則根據(jù) ,可得出AM的長度.
試題解析:(1)作圖形如下:

所以不能看見后面的大樓,因?yàn)榇髽翘幵谌鐖D的A點(diǎn)盲區(qū).
(2)如圖,由題意得,MN= m,F(xiàn)M=10m,EN=30m,設(shè)AM=x,則
解得:,即AM=(m).
答:當(dāng)你至少與M樓相距m時(shí)才能看到后面的N樓.

考點(diǎn):1.視點(diǎn)、視角和盲區(qū);2.相似三角形的判定和性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如果一個(gè)圖形經(jīng)過分割,能成為若干個(gè)與自身相似的圖形,我們稱它為“相似分割的圖形”,如圖所示的等腰直角三角形和矩形就是能相似分割的圖形.

(1)你能否再各舉出一個(gè) “能相似分割”的三角形和四邊形?
(2)一般的三角形是否是“能相似分割的圖形”?如果是請給出一種分割方案并畫出圖形,否則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,AC=8cm,BC=16cm,點(diǎn)P從點(diǎn)A出發(fā),沿著AC邊向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),如果P與Q同時(shí)出發(fā),經(jīng)過幾秒△PQC和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

老師要求同學(xué)們在圖①中內(nèi)找一點(diǎn)P,使點(diǎn)P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點(diǎn)P,點(diǎn)P即為所求.
請你在圖②中的內(nèi)找一點(diǎn)P,使點(diǎn)P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長線交半圓O于點(diǎn)D。

(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接PC,當(dāng)∠ACP=600時(shí),求弧AD的長;
(3)過點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動(dòng)點(diǎn)M,N同時(shí)從B點(diǎn)出發(fā),分別沿B?A,B?C運(yùn)動(dòng),速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點(diǎn)N到達(dá)終點(diǎn)C時(shí),點(diǎn)M也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時(shí)間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運(yùn)動(dòng)過程中,存在某時(shí)刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運(yùn)動(dòng)過程中,存在某時(shí)刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則       (填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;
(3)如圖3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.則的值為        

圖1                     圖2                     圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

晚上,小亮走在大街上.他發(fā)現(xiàn):當(dāng)他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個(gè)影子成一直線時(shí),自己右邊的影子長為3米,左邊的影子長為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米.求路燈的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在正方形ABCD中,AB=1,點(diǎn)E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點(diǎn)F,設(shè)BE,CF

圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點(diǎn)記作O,直線OF交線段CE于點(diǎn)G,求證:;

圖2
(3)在(2)的條件下,當(dāng)時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊答案