【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

【答案】解:∵cos∠DBF=,
∴BF=60×0.85=51,
FH=DE=9,
∴EG=HC=110﹣51﹣9=50,
∵tan∠AEG=
∴AG=50×2.48=124,
∵sin∠DBF=,
∴DF=60×0.53=31.8,
∴CG=31.8,
∴AC=AG+CG=124+31.8=155.8.

【解析】根據(jù)已知和余弦的概念求出DF的長,得到CG的長,根據(jù)正切的概念求出AG的長,求和得到答案.
此題考查了解直角三角形中的俯角與仰角的問題,通過構造直角三角形利用三角函數(shù)求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,設AB=c,BC=a,AC=b,中線AE,BF相交于G,若AE⊥BF.

(1)①當∠ABF=60°,c=4時,求a與b的值;
②當∠ABF=30°,c=2 時,a= , b=;
(2)由(1)獲得啟示,猜想a2 , b2 , c2三者之間滿足數(shù)量關系式是;(直接寫出結果)
(3)如圖2,在平行四邊形ABCD中,AB=4 ,BC=3 ,點E,F(xiàn),G分別是AD,AB,CD的中點,CF與BG交于P點,若EF⊥FC.利用(2)中的結論,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.

(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數(shù)相等,比賽結束后,發(fā)現(xiàn)學生成績分別為70分,80分,90分,100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:
乙校成績統(tǒng)計表

分數(shù)(分)

人數(shù)(人)

70

7

80

90

1

100

8


(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為 ;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計算知S2=135,S2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自從2012年12月4日中央公布“八項規(guī)定”以來,我市某中學積極開展“厲行勤儉節(jié)約,反對鋪張浪費”的活動.為此,校學生會在全校范圍內(nèi)隨機抽取了若干名學生就某日晚飯浪費飯菜情況進行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學生會根據(jù)統(tǒng)計結果繪制了如下統(tǒng)計表和統(tǒng)計圖,根據(jù)所提供的信息回答下列問題:

選項

頻數(shù)

頻率

A

30

M

B

n

0.2

C

5

0.1

D

5

0.1


(1)這次被抽查的學生有多少人?
(2)求表中m,n的值,并補全條形統(tǒng)計圖;
(3)該中學有學生2200名,請估計這餐晚飯有剩飯的學生人數(shù),按平均每人剩10克米飯計算,這餐晚飯將浪費多少千克米飯?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,對角線AC與BD相交于點O,點E在DC邊的延長線上.若∠CAE=15°,則AE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在AB上. SA'>”不對,理由為:根據(jù)規(guī)則:每一題搶答對得10分,搶答錯扣20分,搶答不到不得分也不扣分.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);
(2)如圖2,設∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.①求證:OD⊥BC;②求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DE是BC的垂直平分線,DE交AC于點E,連接BE.若BE=9,BC=12,則cosC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中.頂點為(﹣4,﹣1)的拋物線交y軸于點A(0,3),交x軸于B,C兩點.

(1)求此拋物線的解析式;
(2)已知點P是拋物線上位于B,C兩點之間的一個動點,問:當點P運動到什么位置時,四邊形ABPC的面積最大?并求出此時四邊形ABPC的面積.
(3)過點B作AB的垂線交拋物線于點D,是否存在以點C為圓心且與線段BD和拋物線的對稱軸l同時相切的圓?若存在,求出圓的半徑;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案