【題目】如圖,一艘輪船從A處向正北方向航行,達(dá)到B處后,繼續(xù)航行到達(dá)D處時(shí)發(fā)現(xiàn),燈塔C恰好在正西方向,從A處、B處望燈塔C的角度分別是∠A=30°,∠DBC=60°,若DB等于36海里,求B到CA的距離.
【答案】B到CA的距離等于36海里.
【解析】試題分析:由三角形外角的性質(zhì)得∠BCA=30°,由直角三角形的兩個(gè)銳角互余得∠BCD=30°,由此得∠BCA = ∠BCD,CB平分∠ACD,由角平分線的性質(zhì)得B到CA的距離等于36海里.
試題解析:∵C在D的正西方向,
∴∠CDB=90°,
∵∠DBC =∠BCA +∠A,
∴∠BCA =∠DBC -∠A=60°-30°=30°,
在Rt△BCD中,
∠BCD+∠CBD=90°,
∴∠BCD= 90°-∠CBD=90°-60°=30°,
∴∠BCA = ∠BCD,
∴ CB平分∠ACD,
∴B到CA的距離等于BD=36海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形兩邊中點(diǎn)的連線叫做這個(gè)三角形的中位線.只要順次連結(jié)三角形三條中位線,則可將原三角形分割為四個(gè)全等的小三角形(如圖(1));把三條邊分成三等份,再按照?qǐng)D(2)將分點(diǎn)連起來(lái),可以看作將整個(gè)三角形分成9個(gè)全等的小三角形;把三條邊分成四等份,…,按照這種方式分下去,第n個(gè)圖形中應(yīng)該得到( )個(gè)全等的小三角形.
A. B. C. D. (n+1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】容量為80的樣本最大值為150,最小值為50,取組距為10,則可以分成( )
A.8組B.9組C.10組D.11組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解一元一次不等式,要依據(jù),將不等式逐步化為的形式.
一般步驟為:①;②去括號(hào);③;④合并同類項(xiàng);⑤系數(shù)化為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元一次不等式的特殊解問(wèn)題分兩步解答:一是;二是根據(jù)問(wèn)題的條件,在求出的范圍內(nèi)確定滿足條件的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】((2016江蘇省無(wú)錫市)如圖,OA=2,以點(diǎn)A為圓心,1為半徑畫⊙A與OA的延長(zhǎng)線交于點(diǎn)C,過(guò)點(diǎn)A畫OA的垂線,垂線與⊙A的一個(gè)交點(diǎn)為B,連接BC
(1)線段BC的長(zhǎng)等于 ;
(2)請(qǐng)?jiān)趫D中按下列要求逐一操作,并回答問(wèn)題:
①以點(diǎn) 為圓心,以線段 的長(zhǎng)為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長(zhǎng)等于;
②連OD,在OD上畫出點(diǎn)P,使OP得長(zhǎng)等于,請(qǐng)寫出畫法,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△AD′E關(guān)于直線AE對(duì)稱,當(dāng)△AD′B為直角三角形時(shí),DE的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com