【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長線于D點,OC交AB于E點.
(1)求∠D的度數(shù);
(2)求證:AC2=ADCE.
【答案】(1)45°;(2)證明參見解析.
【解析】
試題分析:(1)連接OA,由圓周角∠ABC與圓心角∠AOC所對的弧為同一條弧,根據(jù)同弧所對的圓心角等于所對圓周角的2倍,由∠ABC的度數(shù)求出∠AOC的度數(shù),再由OA=OC,根據(jù)等邊對等角,由頂角∠AOC的度數(shù),利用三角形的內(nèi)角和定理求出底角∠ACO的度數(shù),再由∠BAC及∠ABC的度數(shù),求出∠ACB的度數(shù),由∠ACB﹣∠ACO求出∠BCE的度數(shù),由OC與AD平行,根據(jù)兩直線平行同位角相等可得∠D=∠BCE,可得出∠D的度數(shù);(2)由∠ACB的度數(shù),利用鄰補角定義求出∠ACD的度數(shù),再由∠AEC為三角形BEC的外角,利用外角性質(zhì)得到∠AEC=∠ABC+∠BCE,可得出∠AEC的度數(shù),進(jìn)而得到∠AEC=∠ACD,在三角形ACD中,由∠ACD及∠D的度數(shù),求出∠CAD的度數(shù),可得∠CAD=∠ACE,利用兩對對應(yīng)角相等的三角形相似可得三角形AEC與三角形DCA相似,根據(jù)相似三角形的對應(yīng)邊成比例可得證.
試題解析:(1)連接OA,如圖所示:
∵圓周角∠ABC與圓心角∠AOC所對的弧都為弧AC,∴∠AOC=2∠ABC,又∠ABC=15°,∴∠AOC=30°,又OA=OC,∴∠OAC=∠OCA==75°,又∠BAC=45°,∠ABC=15°,∴∠ACB=120°,∴∠OCB=∠ACB﹣∠ACO=120°﹣75°=45°,又OC∥AD,∴∠D=∠OCB=45°;(2)∵∠ABC=15°,∠OCB=45°,∴∠AEC=60°,又∠ACB=120°∴∠ACD=60°,∴∠AEC=∠ACD=60°,∵∠D=45°,∠ACD=60°,∴∠CAD=75°,又∠OCA=75°,∴∠CAD=∠OCA=75°,∴△ACE∽△DAC,∴=,即AC2=ADCE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架長2.5米的梯子AB如圖所示斜靠在一面墻上,這時梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,
①寫出A、B、C的坐標(biāo).
②以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出A1、B1、C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一次函數(shù)y=3x﹣1的圖象沿y軸向上平移3個單位后,得到的圖象對應(yīng)的函數(shù)關(guān)系式為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=100°,沿BD對折恰使點A落在BC邊上的E點,EC上有一點F,且DF=CF,(1)求證:DF=AD,(2) 猜想:BC與BD+AD的關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90,AB=10cm,AC∶BC=4∶3,點P從點A出發(fā)沿AB方向向點B運動,速度為1cm/s,同時點Q從點B出發(fā)沿B→C→A方向向點A運動,速度為2cm/s,當(dāng)一個運動點到達(dá)終點時,另一個運動點也隨之停止運動.
(1)設(shè)點P的運動時間為x(秒),△PBQ的面積為y(cm2),當(dāng)△PBQ存在時,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x=5秒時,在直線PQ上是否存在一點M,使△BCM得周長最小,若存在,求出最小周長,若不存在,請說明理由.
(3)當(dāng)點Q在BC邊上運動時,是否存在x,使得以△PBQ的一個頂點為圓心作圓時,另外兩個頂點均在這個圓上,若存在,求出 x的值;不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=x2﹣x﹣3與x軸交于A和B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D
(1)求出點A,B,D的坐標(biāo);
(2)如圖1,若線段OB在x軸上移動,且點O,B移動后的對應(yīng)點為O′,B′.首尾順次連接點O′、B′、D、C構(gòu)成四邊形O′B′DC,請求出四邊形O′B′DC的周長最小值.
(3)如圖2,若點M是拋物線上一點,點N在y軸上,連接CM、MN.當(dāng)△CMN是以MN為直角邊的等腰直角三角形時,直接寫出點N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com