【題目】由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產(chǎn)品.某公司經(jīng)銷一種空氣凈化器,每臺凈化器的成本價為200元.經(jīng)過一段時間的銷售發(fā)現(xiàn),每月的銷售量y(臺)與銷售單價x(元)的關系為y=-2x+1000.
(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數(shù)關系式;
(2)若要使每月的利潤為40000元,銷售單價應定為多少元?
(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?

【答案】
(1)解:由題意得:w=(x-200)y=(x-200)(-2x+1000)=-2x2+1400x-200000
(2)解:令w=-2x2+1400x-200000=40000,
解得:x=300或x=400,
故要使每月的利潤為40000元,銷售單價應定為300或400元
(3)解:y=-2x2+1400x-200000=-2(x-350)2+45000,
當x=250時y=-2×2502+1400×250-200000=25000;
故最高利潤為45000元,最低利潤為25000元
【解析】(1)利用利潤公式:單件利潤銷量,轉(zhuǎn)換為自變量的代數(shù)式,可求出關系式;(2)把利潤的具體值代入函數(shù)關系式,建立方程,可出銷售單價;(3)把二次函數(shù)解析式配成頂點式,結(jié)合自變量的取值范圍和圖像,求出最值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四名同學進行一次乒乓球單打比賽,要從中選兩位同學打第一場比賽.
(1)若由甲挑一名選手打第一場比賽,選中乙的概率是多少?(直接寫出答案)
(2)任選兩名同學打第一場,請用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1中,的中點,將沿折疊后得到,且點內(nèi)部.將延長交于點

1)猜想并填空:__________(填“”、“”、“”);

2)請證明你的猜想;

3)如圖2,當,設,,求出、、三者之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)完成下面的推理說明:

已知:如圖,,、分別平分.

求證:.

證明:分別平分(已知),

, ( ).

( ),

( ).

( ).

(等式的性質(zhì)).

( ).

(2)說出(1)的推理中運用了哪兩個互逆的真命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2mx+m2-1=0.
(1)不解方程,判別方程的根的情況;
(2)若方程有一個根為3,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】節(jié)能燈在城市已基本普及,今年某省面向縣級及農(nóng)村地區(qū)推廣,為相應號召,某商場計劃用3800元購進節(jié)能燈120只,這兩種節(jié)能燈的進價、售價如下表:

(1)求甲、乙兩種節(jié)能燈各進多少只?

(2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點D,E為BC的中點,已知A(0,4)、C(5,0),二次函數(shù) 的圖象拋物線經(jīng)過A、C兩點.

(1)求該二次函數(shù)的表達式;
(2)F,G分別為x軸、y軸上的動點,首尾順次連接D、E、F、G構(gòu)成四邊形DEFG,求四邊形DEFG周長的最小值;
(3)拋物線上是否存在點P,使△ODP的面積為8?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請判斷ABEF的位置關系,并說明理由.

解:   ,理由如下:

ABCD,

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以O為原點的直角坐標系中,A點的坐標為(0,3),直線x=-3交x軸于點B,P為線段AB上一動點,作直線PC⊥PO,交于直線x=﹣3于點C。過P點作直線MN平行于x軸,交y軸于M,交直線x=﹣3于點N。

(1)當點C在第二象限時,求證:△OPM≌△PCN;
(2)設AP長為m,以P、O、B、C為頂點的四邊形的面積為S,請求出S與M之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當點P在線段AB上移動時,點C也隨之在直線x=-3上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標,如果不可能,請說明理由。

查看答案和解析>>

同步練習冊答案