【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點(diǎn),BP=3,Q是CD邊上一動(dòng)點(diǎn),將梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)A′.當(dāng)CA′的長(zhǎng)度最小時(shí),CQ的長(zhǎng)為( )
A.5
B.7
C.8
D.
【答案】B
【解析】解:作CH⊥AB于H,如圖,
∵菱形ABCD的邊AB=8,∠B=60°,
∴△ABC為等邊三角形,
∴CH= AB=4 ,AH=BH=4,
∵PB=3,
∴HP=1,
在Rt△CHP中,CP= =7,
∵梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)A′,
∴點(diǎn)A′在以P點(diǎn)為圓心,PA為半徑的弧上,
∴當(dāng)點(diǎn)A′在PC上時(shí),CA′的值最小,
∴∠APQ=∠CPQ,
而CD∥AB,
∴∠APQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP=7.
故選B.
本題考查了菱形的性質(zhì):菱形具有平行四邊形的一切性質(zhì);菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角.也考查了折疊的性質(zhì).解決本題的關(guān)鍵是確定A′在PC上時(shí)CA′的長(zhǎng)度最小.作CH⊥AB于H,如圖,根據(jù)菱形的性質(zhì)可判斷△ABC為等邊三角形,則CH= AB=4 ,AH=BH=4,再利用勾股定理計(jì)算出CP=7,再根據(jù)折疊的性質(zhì)得點(diǎn)A′在以P點(diǎn)為圓心,PA為半徑的弧上,利用點(diǎn)與圓的位置關(guān)系得到當(dāng)點(diǎn)A′在PC上時(shí),CA′的值最小,然后證明CQ=CP即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量“望月閣”的高度,來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測(cè)點(diǎn)與“望月閣”底部間的距離不易測(cè)得,因此經(jīng)過研究需要兩次測(cè)量,于是他們首先用平面鏡進(jìn)行測(cè)量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來回走動(dòng),走到點(diǎn)D時(shí),看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測(cè)影長(zhǎng)的方法進(jìn)行了第二次測(cè)量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時(shí),測(cè)得小亮身高FG的影長(zhǎng)FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購進(jìn)甲、乙兩種商品,乙商品的單價(jià)是甲商品單價(jià)的2倍,購買240元甲商品的數(shù)量比購買300元乙商品的數(shù)量多15件,求兩種商品單價(jià)各為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)P處,則FP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為p= 且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如表:
時(shí)間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,BD是它的一條對(duì)角線,過A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長(zhǎng)AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=4,F(xiàn)N=3,求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△ABD中,AD與BC相交于O點(diǎn),∠1=∠2,請(qǐng)你添加一個(gè)條件(不再添加其它線段,不再標(biāo)注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是?并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,蹺蹺板AB的一端B碰到地面時(shí),AB與地面的夾角為18°,且OA=OB=3m.
(1)求此時(shí)另一端A離地面的距離(精確到0.1m);
(2)蹺動(dòng)AB,使端點(diǎn)A碰到地面,請(qǐng)畫出點(diǎn)A運(yùn)動(dòng)的路線(寫出畫法,并保留畫圖痕跡),并求出點(diǎn)A運(yùn)動(dòng)路線的長(zhǎng).
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com