(2007•巴中)如圖,以邊長(zhǎng)為的正方形ABCD的對(duì)角線所在直線建立平面直角坐標(biāo)系,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B且與直線AB只有一個(gè)公共點(diǎn).
(1)求直線AB的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)若點(diǎn)P為(2)中拋物線上一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,問(wèn)是否存在這樣的點(diǎn)P,使△PMC∽△ADC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)正方形對(duì)角線的性質(zhì),當(dāng)AB=時(shí),OA=OB=1,可求直線AB的解析式;
(2)把B(0,-1)代入拋物線y=x2+bx+c中得c=-1,聯(lián)立直線與拋物線解析式,得方程組,消去y,得關(guān)于x的一元二次方程,當(dāng)直線與拋物線有唯一公共點(diǎn)時(shí),△=0,可求b;
(3)∵△ADC為等腰直角三角形,則△PMC為等腰直角三角形,即CM=PM=m,又OC=1,根據(jù)圖象P點(diǎn)坐標(biāo)可設(shè)為(1+m,m),(1-m,m),(1-m,-m),代入拋物線解析式分別求解.
解答:解:(1)設(shè)直線AB的解析式為:y=kx+b,
由已知可得A(-1,0),B(0,-1)則

∴直線AB的解析式為:y=-x-1

(2)把B(0,-1)代入拋物線y=x2+bx+c中得c=-1,聯(lián)立
得x2+(b+1)x=0,
當(dāng)△=0時(shí),解得b=-1,
∴拋物線解析式為:y=x2-x-1

(3)存在這樣的點(diǎn)P,使△PMC∽△ADC,
∵△ADC為等腰直角三角形,則△PMC為等腰直角三角形,
即CM=PM=m,
又OC=1,根據(jù)圖象P點(diǎn)坐標(biāo)可設(shè)為(1+m,m),(1-m,m),(1-m,-m),
代入拋物線解析式y(tǒng)=x2-x-1中,
解方程:(1+m)2-(1+m)-1=m,
(1-m)2-(1-m)-1=m,
(1-m)2-(1-m)-1=-m;
解得m=-1,1,1±,
∴P點(diǎn)的坐標(biāo)為(0,-1),(2,1),(,1-),(-,1+).
點(diǎn)評(píng):本題考查了正方形的性質(zhì),一次函數(shù),二次函數(shù)解析式的求法,并運(yùn)用拋物線解析式解決三角形的相似問(wèn)題;本題需要形數(shù)結(jié)合,分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(02)(解析版) 題型:填空題

(2007•巴中)如圖,點(diǎn)P在雙曲線(k≠0)上,點(diǎn)P′(1,2)與點(diǎn)P關(guān)于y軸對(duì)稱,則此雙曲線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•巴中)如圖,以邊長(zhǎng)為的正方形ABCD的對(duì)角線所在直線建立平面直角坐標(biāo)系,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B且與直線AB只有一個(gè)公共點(diǎn).
(1)求直線AB的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)若點(diǎn)P為(2)中拋物線上一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,問(wèn)是否存在這樣的點(diǎn)P,使△PMC∽△ADC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2007•巴中)如圖,點(diǎn)P在雙曲線(k≠0)上,點(diǎn)P′(1,2)與點(diǎn)P關(guān)于y軸對(duì)稱,則此雙曲線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省巴中市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•巴中)如圖,點(diǎn)P在雙曲線(k≠0)上,點(diǎn)P′(1,2)與點(diǎn)P關(guān)于y軸對(duì)稱,則此雙曲線的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案