精英家教網(wǎng)如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用
 
秒鐘.
分析:把此正方體的點A所在的面展開,然后在平面內(nèi),利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.
解答:解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.
(1)展開前面右面由勾股定理得AB=
(2+3)2+(2)2
=
29
cm;
(2)展開底面右面由勾股定理得AB=
32+(2+2)2
=5cm;
所以最短路徑長為5cm,用時最少:5÷2=2.5秒.
點評:本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,邊長為12m的正方形池塘的周圍是草地,池塘邊A,B,C,D處各有一棵樹,且AB=BC=CD=3m,現(xiàn)用長4m的繩子將羊拴在一棵樹上,為了使在草地上活動區(qū)域的面積最大,應(yīng)將繩子拴在其中的一棵樹上,為了使羊在草地上活動區(qū)域的面積最大,應(yīng)將繩子拴在(  )
A、A處B、B處C、C處D、D處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用______秒鐘.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第4章《視圖與投影》易錯題集(79):4.1 視圖(解析版) 題型:填空題

如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用    秒鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期中題 題型:填空題

所示一棱長為3cm的正方體,把所有的面均分成33個小正方形。其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側(cè)面的B點,最少要用(    )秒鐘;

查看答案和解析>>

同步練習(xí)冊答案