【題目】如圖, 已知菱形,,點(diǎn)是邊延長(zhǎng)線上一點(diǎn), 連接交延長(zhǎng)線于點(diǎn),連接交于點(diǎn),連接交、于點(diǎn)、,設(shè),.
(1)用含的代數(shù)式表示;
(2)求關(guān)于的函數(shù)解析式, 并寫(xiě)出它的定義域;
(3)當(dāng)與相似時(shí), 求的值 .
【答案】(1) ;(2) ;(3)1.
【解析】
(1)先證明△PBC∽△CDQ,得出比例式即可得出結(jié)論;
(2)先證明△BOP∽△EOD,得出DE,再證明△DEQ∽△DAB即可得出結(jié)論;
(3)先證明∠BCD=∠CDQ,進(jìn)而分兩種情況,①利用相似三角形得出比例式求出FC=x,再證明△BFP∽△CFD得出比例式求出x即可得出結(jié)論;
②利用相似三角形的性質(zhì)得出∠FDC=∠QCD,進(jìn)而判斷出PD∥PQ與條件矛盾.
(1)四邊形是菱形,
,,
,,
,
,
,,
,
;
(2),
,
,
,,
,
,
,
,
,
(3),,
與相似,
①當(dāng)時(shí),
,,
,
,
,
,
,
,
或(舍,
,
②當(dāng)時(shí),
,
,而與相交于點(diǎn),
矛盾,故此種情況不存在,
即:當(dāng)與相似時(shí),的值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BE是弦,點(diǎn)D是弦BE上一點(diǎn),連接OD并延長(zhǎng)交⊙O于點(diǎn)C,連接BC,過(guò)點(diǎn)D作FD⊥OC交⊙O的切線EF于點(diǎn)F.
(1)求證:∠CBE=∠F;
(2)若⊙O的半徑是2,點(diǎn)D是OC中點(diǎn),∠CBE=15°,求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于1200元,那么銷(xiāo)售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動(dòng),設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)問(wèn)題提出:如圖1,若AD=AE,AB=AC.
①∠ABD與∠ACE的數(shù)量關(guān)系為 ;②∠BPC的度數(shù)為 .
(2)猜想論證:如圖2,若∠ADE=∠ABC=30°,則(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.
(3)拓展延伸:在(1)的條件中,若AB=2,AD=1,若把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),直接寫(xiě)出PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點(diǎn)F是DA延長(zhǎng)線上的一點(diǎn),過(guò)⊙O上一點(diǎn)C作⊙O的切線交DF于點(diǎn)E,AC平分∠FAB
(1)求證:CE⊥DF;(2)若AE=2,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標(biāo)有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個(gè)小球(不放回),記下數(shù)字作為點(diǎn)A的橫坐標(biāo),再?gòu)挠嘞碌膬蓚(gè)小球中任意摸出一個(gè)小球,記下數(shù)字作為點(diǎn)A的縱坐標(biāo).
(1)用畫(huà)樹(shù)狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A落在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】快、慢兩車(chē)分別從相距千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛.先相向而行,快車(chē)到達(dá)乙地后,停留小時(shí),然后按原路原速返回,快車(chē)比慢車(chē)晚小時(shí)到達(dá)甲地,快、慢兩車(chē)之間相距的距離(千米)與出發(fā)后所用的時(shí)間(小時(shí))的關(guān)系如圖所示,請(qǐng)問(wèn):在快車(chē)返回途中,快、慢兩車(chē)相距路程為千米時(shí),慢車(chē)行駛了__________小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心坐標(biāo)為(,a)半徑為,函數(shù)y=2x﹣2的圖象被⊙A截得的弦長(zhǎng)為2,則a的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com