【題目】如圖,AB∥CD,AC與BD相交于點(diǎn)O,∠A=30°,∠COD=105°.則∠D的大小是(
A.30°
B.45°
C.65°
D.75°

【答案】B
【解析】解:∵AB∥CD, ∴∠C=∠A=30°.
在△COD中,∵∠C+∠COD+∠D=180°,
∴∠D=180°﹣30°﹣105°=45°.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的性質(zhì)和三角形的內(nèi)角和外角的相關(guān)知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,C分別在y軸,x軸上,∠ACB=90°,OA= ,拋物線y=ax2﹣ax﹣a經(jīng)過點(diǎn)B(2, ),與y軸交于點(diǎn)D.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)B關(guān)于直線AC的對稱點(diǎn)是否在拋物線上?請說明理由;
(3)延長BA交拋物線于點(diǎn)E,連接ED,試說明ED∥AC的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: sin60°﹣4cos230°+sin45°tan60°+( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,直線PA交O于A、E兩點(diǎn),PA的垂線CD切O于點(diǎn)C,過點(diǎn)A作O的直徑AB.

(1)求證:AC平分∠DAB;
(2)將直線CD向下平行移動,在將直線CD向下平行移動的過程中,如圖乙、丙,試指出與∠DAC相等的角(不要求證明).
(3)在圖甲中,若DC+DA=6,O的直徑為10,求AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點(diǎn)C作⊙O的切線BC,E是BC的中點(diǎn),AB交⊙O于D點(diǎn).

(1)直接寫出ED和EC的數(shù)量關(guān)系:
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當(dāng)BC= 時,四邊形AOED是平行四邊形,同時以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC邊上的動點(diǎn),設(shè)BP=x,若能在AC邊上找到一點(diǎn)Q,使∠BQP=90°,則x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過A(6,0)和B(0,12)兩點(diǎn),且與直線y=x交于點(diǎn)C.

(1)求直線l的解析式;
(2)若點(diǎn)P(x,0)在線段OA上運(yùn)動,過點(diǎn)P作l的平行線交直線y=x于D,求△PCD的面積S與x的函數(shù)關(guān)系式;S有最大值嗎?若有,求出當(dāng)S最大時x的值;

(3)若點(diǎn)P(x,0)在x軸上運(yùn)動,是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,體育老師隨機(jī)抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:

頻數(shù)

頻率

第一組(0≤x<15)

3

0.15

第二組(15≤x<30)

6

a

第三組(30≤x<45)

7

0.35

第四組(45≤x<60)

b

0.20


(1)頻數(shù)分布表中a= , b= , 并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機(jī)從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算 +( 2 +| ﹣2|+3tan30°﹣2(π﹣ 0=

查看答案和解析>>

同步練習(xí)冊答案