如圖所示,若BD⊥AC于D,EF⊥AC于F,∠ABC+∠BGD=,求證:∠1=∠2.

證明:因?yàn)锽D⊥AC,EF⊥AC(已知),所以∠BDC=,∠EFC=(垂直定義),所以∠BDC=∠EFC(等量代換),所以BD∥________(  ),所以________=________(兩直線平行,同位角相等).又因?yàn)椤螦BC+∠BGD=(已知),所以________∥________(  ),所以∠1=∠3(  ),所以∠1=∠2(等量代替).

答案:
解析:

EF,同位角相等,兩直線平行,∠2,∠3,GD,BC,同旁內(nèi)角互補(bǔ),兩直線平行,兩直線平行,內(nèi)錯(cuò)角相等


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問(wèn)題:(1)觀察并猜測(cè),無(wú)論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫(xiě)出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說(shuō)明:如果經(jīng)過(guò)思考分析,沒(méi)有找到解決(2)中的問(wèn)題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué)八年級(jí)下冊(cè) 北師大新課標(biāo) 題型:044

由“三角形內(nèi)角和定理”可證得:三角形兩內(nèi)角的平分線相交所成的鈍角等于加上第三個(gè)角的一半.如圖所示,△ABC中,若BD,CD分別是它的角平分線,則∠BDC=∠A

(1)

如圖所示,若BD,CD是△ABC兩外角的平分線,試證明∠BDC=∠A

(2)

如圖所示,若BD,CD分別是△ABC一內(nèi)角和一外角的平分線,試證:∠D=∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問(wèn)題:(1)觀察并猜測(cè),無(wú)論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫(xiě)出答案)______.
(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說(shuō)明:如果經(jīng)過(guò)思考分析,沒(méi)有找到解決(2)中的問(wèn)題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年遼寧省大連市旅順口區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問(wèn)題:(1)觀察并猜測(cè),無(wú)論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫(xiě)出答案)______.
(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說(shuō)明:如果經(jīng)過(guò)思考分析,沒(méi)有找到解決(2)中的問(wèn)題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案