探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為
 

聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點,若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點,且AE=
1
3
AB,BF=
1
3
BC,若?ABCD的面積為S,則四邊形BEDF的面積為
 

解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個動點,F(xiàn)是BC邊上的一個動點.若在兩點運動的過程中,四邊形BEDF的面積始終等于矩形面積的
1
2
,請?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.
精英家教網(wǎng)
分析:(1)從陰影部分底邊是三角形ABC第邊的一半而解得;
(2)連接BD,從陰影部分占所在三角形面積多少算起而得;
(3)連接BD,同理(2)而解得;
(4)連接BD,由題意列式子從而得.
解答:解:(1)∵AD為三角形ABC的底邊中線,
∴DC為BC的一半,
由圖可知△ABC與△ADC同高,
又知△ABC面積為S,
∴三角形ADC面積為
1
2
S
,
故填
1
2
S


(2)連接BD,
∵E,F(xiàn)分別為邊AB,BC的中點,
∴同理(1)可知△BED面積為△ABD面積的一半,△BDF面積為△BDC面積的一半,
又∵?ABCD面積為S,
∴四邊形BEDF面積為
1
2
S
;
精英家教網(wǎng)
(3)連接BD,
∵AE=
1
3
AB
,BF=
1
3
BC
,
∴計算同理于(2),
∵?ABCD的面積為S,
∴四邊形BEDF為
1
2
S

故填
1
2
S


(4)連接BD,
由題意四邊形BEDF的面積始終等于矩形面積的一半,
即AB•BC=2(
1
2
BE•AD+
1
2
BF•AB),
∵AB=nBC,
∴AB•BC=2(
1
2
BE•
1
n
AB+
1
2
BF•AB)=BE•
1
n
AB+BF•AB,
∴BC=BE•
1
n
+BF,
1
n
AB=
1
n
EB+BF,
∴AE=nBF.
點評:本題考查三角形面積,以及把平行四邊形面積轉(zhuǎn)化為三角形面積來求,從而解得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為______.
聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點,若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點,且AE=數(shù)學(xué)公式AB,BF=數(shù)學(xué)公式BC,若?ABCD的面積為S,則四邊形BEDF的面積為______.
解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個動點,F(xiàn)是BC邊上的一個動點.若在兩點運動的過程中,四邊形BEDF的面積始終等于矩形面積的數(shù)學(xué)公式,請?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省保定市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為______.
聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點,若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點,且AE=AB,BF=BC,若?ABCD的面積為S,則四邊形BEDF的面積為______.
解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個動點,F(xiàn)是BC邊上的一個動點.若在兩點運動的過程中,四邊形BEDF的面積始終等于矩形面積的,請?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省淮北市濉溪縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為______.
聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點,若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點,且AE=AB,BF=BC,若?ABCD的面積為S,則四邊形BEDF的面積為______.
解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個動點,F(xiàn)是BC邊上的一個動點.若在兩點運動的過程中,四邊形BEDF的面積始終等于矩形面積的,請?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省邢臺市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•濉溪縣二模)探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為______.
聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點,若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點,且AE=AB,BF=BC,若?ABCD的面積為S,則四邊形BEDF的面積為______.
解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個動點,F(xiàn)是BC邊上的一個動點.若在兩點運動的過程中,四邊形BEDF的面積始終等于矩形面積的,請?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案