精英家教網 > 初中數學 > 題目詳情

【題目】探索題:圖a是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法,求圖b中陰影部分的面積:方法1:; 方法2:;
(2)觀察圖b,寫出代數式(m+n)2 , (m﹣n)2 , mn之間的等量關系,并通過計算驗證;
(3)根據(2)題中的等量關系,解決如下問題:若2a+b=5,ab=2,求(2a﹣b)2的值.

【答案】
(1)(m﹣n)2;(m+n)2﹣4mn
(2)解:(m﹣n)2=(m+n)2﹣4mn;

驗證:∵(m﹣n)2=m2﹣2mn+n2,

(m+n)2﹣4mn=m2+2mn+n2﹣4mn=m2﹣2mn+n2,

∴(m﹣n)2=m2﹣2mn+n2


(3)解:∵(2a﹣b)2=(2a+b)2﹣8ab,

∴當2a+b=5,ab=2時,(2a﹣b)2=52﹣8×2=9


【解析】(1)方法1:圖b中的陰影部分的正方形的邊長等于長為m,寬為n的長方形的長寬之差,即m﹣n,故陰影部分面積為(m﹣n)2; 方法2:圖b中的陰影部分的正方形面積等于大正方形的面積減去4個長方形的面積,即(m+n)2﹣4mn;
所以答案是:(m﹣n)2 , (m+n)2﹣4mn;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,AB=5,聯(lián)結BD,sinABD=.點P是射線BC上的一個動點(點P不與點B重合),聯(lián)結AP,與對角線BD相交于點E,聯(lián)結EC.

(1)求證:AE=CE;

(2)當點P在線段BC上時,設BP=x,PEC的面積為y,求y關于x的函數解析式,并寫出它的定義域;

(3)當點P在線段BC的延長線上時,若PEC是直角三角形,求線段BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC的角平分線AD、中線BE相交于點O,則①AOABE的角平分線;②BOABD的中線;③DEADC的中線;④EDEBC的角平分線的結論中正確的有_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADEDCF,連接AF,BE.

)請寫出AFBE的數量關系與位置關系分別是什么,并證明.

)如圖2,若將條件兩個等邊三角形ADEDCF”變?yōu)閮蓚等腰三角形ADEDCF,且EA=ED=FD=FC,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)2x2x7+3x5x4﹣xx8
(2)(m+3)(m﹣3)﹣(m+3)2
(3)(π﹣3)0﹣( 1+(﹣5)3÷(﹣5)2
(4)(1+2x﹣y)(2x+y﹣1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學生甲與學生乙學習概率初步知識后設計了如下游戲:學生甲手中有6,8,10三張撲克牌,學生乙手中有5,7,9三張撲克牌,每人從各自手中取一張牌進行比較,數字大的為本局獲勝,每次獲取的牌不能放回.

(1)若每人隨機取手中的一張牌進行比較,請列舉出所有情況;

(2)并求學生乙本局獲勝的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校有一個長為25m,寬為12m的長方體游泳池,當前水位是0.1m. 現往游泳池注水,水位每小時上升0.3m.

(1) 寫出游泳池水深dm)與注水時間xh)的函數表達式;

(2) 如果xh)共注水ym3),求yx的函數表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:(x2+3x)(x-3)-x(x-2)2+(x-y)(y-x),其中x=3,y=-2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了防控冬季呼吸道疾病,我校積極進行校園環(huán)境消毒工作,購買了甲、乙兩種消毒液共100瓶,其中甲種每瓶6元,乙種每瓶9元,如果購買這兩種消毒液共花去780元,求甲、乙兩種消毒液各購買了多少瓶?

查看答案和解析>>

同步練習冊答案