【題目】如圖,一、二、三、四這四個扇形的面積之比為1:3:5:1.

(1)請分別求出它們圓心角的度數(shù).

(2)一、二、四這三個扇形的圓心角的度數(shù)之和是多少?

【答案】(1)36°,108°,180°,36°;(2)180°.

【解析】

根據(jù)同圓中扇形的面積比等于扇形的圓心角之比,從而求出各個扇形的圓心角占整個圓周角的幾分之幾,進(jìn)而確定出各個扇形的圓心角.

解:(1)∵一、二、三、四這四個扇形的面積之比為1:3:5:1.,

∴各個扇形的面積分別占整個圓面積的,,,

∴各個扇形的圓心角的度數(shù)分別為×360°=36°,×360°=108°,×360°=180°,×360°=36°;

(2)一、二、四這三個扇形的圓心角的度數(shù)之和是36°+36°+108°=180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,ADDC,BAD=100°,在BC、CD上分別找一點M、N,當(dāng)AMN的周長最小時,∠AMN+ANM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用火柴棒按如圖方式拼圖,第1個圖形共用3根火柴棒,第2個圖形共用9根火柴棒,第3個圖形共用18根火柴棒,……按照這樣的方式繼續(xù)拼圖,第n個圖形共用_____根火柴棒.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)

①在射線BM上作一點C,使AC=AB

②作∠ABM 的角平分線交ACD點;

③在射線CM上作一點E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數(shù)量關(guān)系,并證明之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.

(1)按要求作圖:

①畫出ABC關(guān)于原點O的中心對稱圖形A1B1C1;

②畫出將ABC繞點A逆時針旋轉(zhuǎn)90°得到AB2C2,

(2)回答下列問題:

①△A1B1C1中頂點A1坐標(biāo)為 ;②若P(a,b)為ABC邊上一點,則按照(1)中①作圖,點P對應(yīng)的點P1的坐標(biāo)為

【答案】(1)作圖見解析;(2)(1,-2)(-a,-b)

【解析】試題分析:(1)首先找出對應(yīng)點的位置,再順次連接即可;

2根據(jù)圖形可直接寫出坐標(biāo);根據(jù)關(guān)于原點對稱點的坐標(biāo)特點可得答案.

試題解析:(1)如圖所示:

2根據(jù)圖形可得A1坐標(biāo)為(2,﹣4);

P1的坐標(biāo)為(﹣a,﹣b).

故答案為:(﹣2,﹣4);(﹣a,﹣b).

考點:作圖-旋轉(zhuǎn)變換.

型】填空
結(jié)束】
23

【題目】在學(xué)習(xí)了普查與抽樣調(diào)查之后,某校八(1)班數(shù)學(xué)興趣小組對該校學(xué)生的視力情況進(jìn)行了抽樣調(diào)查,并畫出了如圖所示的條形統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:

(1)本次抽查活動中共抽查了  名學(xué)生;

(2)已知該校七年級、八年級、九年級學(xué)生數(shù)分別為360人、400人、540人.

①試估算:該校九年級視力不低于4.8的學(xué)生約有  名;

②請你幫忙估算出該校視力低于4.8的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:已知Q、K、R為數(shù)軸上三點,若點K到點Q的距離是點K到點R的距離的2倍,我們就稱點K是有序點對[Q,R]的好點

根據(jù)下列題意解答問題:

(1)如圖1,數(shù)軸上點Q表示的數(shù)為1,點P表示的數(shù)為0,K表示的數(shù)為1,點R

表示的數(shù)為2.因為點K到點Q的距離是2,點K到點R的距離是1,所以點K

有序點對的好點但點K不是有序點對的好點.同理可以判斷:

P__________有序點對的好點,點R______________有序點對的好點(填不是”);

(2)如圖2,數(shù)軸上點M表示的數(shù)為-1,點N表示的數(shù)為5,若點X是有序點對的好點,求點X所表示的數(shù),并說明理由?

(3)如圖3,數(shù)軸上點A表示的數(shù)為20,點B表示的數(shù)為10.現(xiàn)有一只電子螞蟻C

B出發(fā),以每秒2個單位的速度向左運動t當(dāng)點A、B、C中恰有一個點為其余兩有序點對的好點,求t的所有可能的值.

查看答案和解析>>

同步練習(xí)冊答案