【題目】(1)操作發(fā)現(xiàn):如圖①,點D是等邊△ABC的邊AB上一動點(點D與點B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AE與BD有怎樣的數(shù)量關(guān)系?說明理由.
(2)類比猜想:如圖②,若點D是等邊△ABC的邊BA延長線上一動點,連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,請直接寫出AE與BD滿足的數(shù)量關(guān)系,不必說明理由;
【答案】(1)AE=BD,理由見解析;(2)AE=BD.
【解析】
(1)根據(jù)等邊三角形的三條邊、三個內(nèi)角都相等的性質(zhì),利用全等三角形的判定定理SAS可以證得△BCD≌△ACE(SAS);然后由全等三角形的對應(yīng)邊相等知AE=BD
(2)通過證明△BCD≌△ACE(SAS),即可證明AE=BD.
解:(1)AE=BD,理由如下:
∵△ABC和△DCE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△BCD≌△ACE(SAS),
∴AE=BD;
(2)AE=BD.
理由如下:∵△ABC和△DCE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△BCD≌△ACE(SAS),
∴AE=BD;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在實驗中我們常常采用利用計算機在平面直角坐標(biāo)系中畫出拋物線和直線,利用兩圖象交點的橫坐標(biāo)來求一元二次方程的解,也可以在平面直角坐標(biāo)系中畫出拋物線和直線,用它們交點的橫坐標(biāo)來求該方程的解.所以求方程的近似解也可以利用熟悉的函數(shù)________和________的圖象交點的橫坐標(biāo)來求得.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+x+3的頂點為P,與y軸交于點A,若向右平移4個單位,向下平移4個單位,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某二次函數(shù)的圖象,將其向左平移個單位后的圖象的函數(shù)解析式為,則下列結(jié)論中正確的有( )
;;;.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:
… | … | ||||||
… | … |
根據(jù)上表填空:
①拋物線與軸的交點坐標(biāo)是________和________;
②拋物線經(jīng)過點,________;
③在對稱軸右側(cè),隨增大而________;
試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣2mx+3m﹣3,以下說法:①圖象過定點(),②函數(shù)圖象與x軸一定有兩個交點,③若x=1時與x=2017時函數(shù)值相等,則當(dāng)x=2018時的函數(shù)值為﹣3,④當(dāng)m=﹣1時,直線y=﹣x+1與直線y=x+3關(guān)于此二次函數(shù)對稱軸對稱,其中正確命題是( )
A. ①② B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)若BC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是線段AB上除點A、B外的任意一點,分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)請判斷△CMN的形狀,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com