【題目】計算:|2﹣ |+( ﹣2016)0+2cos30°+( 1

【答案】解:|2﹣ |+( ﹣2016)0+2cos30°+( 1=2﹣ +1+2× +3
=6
【解析】首先計算乘方,然后從左向右依次計算,求出算式的值是多少即可.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結(jié)論中正確的個數(shù)有( ) ①4a+b=0;
②9a+3b+c<0;
③若點A(﹣3,y1),點B(﹣ ,y2),點C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM= AD,點N是折線AB﹣BC上的一個動點.

(1)如圖1,當(dāng)N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為
(2)當(dāng)點N在AB邊上時,將△AMN沿MN翻折得到
△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為 ;
②當(dāng)點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當(dāng)點A′落在對角線BD上時,如圖4,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)計算:4sin60°+|3﹣ |﹣( 1+(π﹣2017)0
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的△ABC中,按以下步驟作圖: ①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M,N;
②作直線MN交AB于點D,連接CD.
若CD=AC,∠A=50°,則∠ACB的度數(shù)為(

A.90°
B.95°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ) ①面積之比為1:2的兩個相似三角形的周長之比是1:4;②三視圖相同的幾何體是正方體;③﹣27沒有立方根;④對角線互相垂直的四邊形是菱形;⑤某中學(xué)人數(shù)相等的甲、乙兩班學(xué)生參加了同一次數(shù)學(xué)測驗,班平均分和方差分別為 =82分, =82分,S2=245,S2=190,那么成績較為整齊的是乙班.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案