【題目】如圖,在直角坐標(biāo)平面內(nèi),直線y=﹣x﹣4與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C在x軸正半軸上,且滿足OC=OB.
(1)求線段AB的長(zhǎng)及點(diǎn)C的坐標(biāo);
(2)設(shè)線段BC的中點(diǎn)為E,如果梯形AECD的頂點(diǎn)D在y軸上,CE是底邊,求點(diǎn)D的坐標(biāo)和梯形AECD的面積.
【答案】(1)A(﹣3,0),B(0,﹣4),C(2,0);(2)S梯形AECD=20.
【解析】
(1)令x=0求出點(diǎn)B的坐標(biāo),令y=0求出點(diǎn)A的坐標(biāo),根據(jù)勾股定理求出AB的長(zhǎng),然后根據(jù)OC=OB即可求出點(diǎn)C的坐標(biāo);
(2)首先證明梯形AECD是直角梯形,由△AOD∽△COB,求出OD的長(zhǎng),再由勾股定理求出BC、AD、AE的長(zhǎng)即可解決問(wèn)題;
(1)令x=0,得到y=﹣4,
∴B(0,﹣4),
令y=0,得到x=﹣3,
∴A(﹣3,0),
∴AB==5,
∵OC=OB,點(diǎn)C中x軸的正半軸上,
∴C(2,0)
(2)∵AC=AB=5,EC=BE,
∴AE⊥BC,
∵CE是梯形AECD的底,
∴AD∥CE,
∴△AOD∽△COB,
∴,
∴,
∴OD=6,
∴D(6,0),
∵BC=2,AD=3,AE=,
∴S梯形AECD×AE=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,則2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,計(jì)算出1+5+52+53+…+52019的值為( )
A. 52019-1B. 52020-1C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+(3﹣2k)x+k2+1=0的兩個(gè)實(shí)數(shù)根分別是x1、x2,當(dāng)|x1|+|x2|=7時(shí),那么k的值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車(chē)從倉(cāng)庫(kù)O出發(fā)在東西街道上運(yùn)送水果,規(guī)定向東為正方向,一次到達(dá)的5個(gè)銷(xiāo)售地點(diǎn)依次分別為A,B,C,D,E,最后回到倉(cāng)庫(kù)O,貨車(chē)行駛的記錄(單位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.請(qǐng)問(wèn):
(1)請(qǐng)以倉(cāng)庫(kù)O為原點(diǎn),向東為正方向,選擇適當(dāng)?shù)膯挝婚L(zhǎng)度,畫(huà)出數(shù)軸,并標(biāo)出A,B,C,D,E的位置;
(2)試求出該貨車(chē)共行駛了多少千米?
(3)如果貨車(chē)運(yùn)送的水果以100千克為標(biāo)準(zhǔn)重量,超過(guò)的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),則運(yùn)往A,B,C,D,E五個(gè)地點(diǎn)的水果重量可記為:
+50,﹣15,+25,﹣10,﹣15,則該貨車(chē)運(yùn)送的水果總重量是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,M是BC的中點(diǎn),且AM=9,BD=12,AD=10,則ABCD的面積是( 。
A. 30B. 36C. 54D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲(chóng)在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),他從A處出發(fā)去看望B、C、D處的其他甲蟲(chóng),規(guī)定:向上向右走均為正,向下向左走均為負(fù),如果從A到B記為A→B{1,4},從B到A記為:B→A{﹣1,﹣4},其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中A→C{ , },C→B{ , }.
(2)若這只甲蟲(chóng)的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的路程.
(3)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A{2﹣a,b﹣3},M→N{3﹣a,b﹣2},則N→A應(yīng)記為什么?直接寫(xiě)出你的答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、B在數(shù)軸上分別表示a,b.請(qǐng)認(rèn)真觀察數(shù)軸及表格再解答問(wèn)題:
(1)表格中的m=_____,n=________
(2)若A、B兩點(diǎn)間的距離記為d,則d與a、b間的等量關(guān)系為__________
(3)結(jié)合上述結(jié)論,并利用數(shù)軸解答下列問(wèn)題
①滿足到表示數(shù)4和-6的點(diǎn)的距離之和等于16的數(shù)為
②若點(diǎn)C表示的數(shù)為x,求的最小值.(本頁(yè)可作為草稿紙使用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知射線OA,OB,OC,OD,∠AOD=∠BOC=α.
①若α=38°,∠COD=30°,求∠BOD、∠AOC的度數(shù);
②若∠COD=25°,請(qǐng)找出圖中與∠BOD相等的角,并通過(guò)計(jì)算說(shuō)明理由;
(2)如圖2,∠MPN是鈍角,請(qǐng)利用三角尺畫(huà)特殊角的功能,在圖2中畫(huà)一個(gè)與∠MPN相等的角.(標(biāo)出圖中特殊角的度數(shù),并寫(xiě)出與∠MPN相等的角)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com