已知a=
5
-
3
5
+
3
,b=
5
+
3
5
-
3
,則二次根式
a3+b3-367
的值是
11
11
分析:先把a(bǔ)、b的值通過分母有理化化簡,再把根號下的立方和展開代入計算.
解答:解:∵a=
5
-
3
5
+
3
=
8-2
15
2
=4-
15
,b=
5
+
3
5
-
3
=4+
15

∴a3+b3-367=(a+b)(a2-ab+b2)-367,
=(4-
15
+4+
15
)[(4-
15
2-(4-
15
)(4+
15
)+(4+
15
2]-367,
=8×[16+15-8
15
-(16-15)+16+15+8
15
]-367,
=8×(62-1)-367,
=488-367,
=121,
a3+b3-367
=11.
故答案為:11.
點評:此題考查分母有理化和二次根式的化簡,還要會應(yīng)用立方和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知
a-b
b
=
3
5
,則
a
b
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知
a-b
a
=
3
5
,則
b
a
=( 。
A、
3
5
B、
5
3
C、
2
5
D、
5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知代數(shù)式
2x-3
5
2
3
x-3
互為相反數(shù),則x的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:∠1=35°18′,∠2=35.18°,∠3=35.2°,則下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案