如圖,已知CD是⊙O的直徑,點A為CD延長線上一點,BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;
(2)若⊙O的半徑為2,求的長.

【答案】分析:(1)連接OB,如圖所示,由BC=AB,利用等邊對等角得到一對角相等,由∠CAB的度數(shù)得出∠ACB的度數(shù),再由OC=OB,利用等邊對等角得到一對角相等,確定出∠CBO的度數(shù),由∠AOB為△BOC的外角,利用外角的性質(zhì)求出∠AOB的度數(shù),在△AOB中,利用三角形的內(nèi)角和定理求出∠ABO為90°,可得出AB為圓O的切線,得證;
(2)利用弧長公式求解.
解答:(1)證明:連接OB,如圖所示:
∵BC=AB,∠CAB=30°,
∴∠ACB=∠CAB=30°,
又OC=OB,
∴∠CBO=∠ACB=30°,
∴∠AOB=∠CBO+∠ACB=60°,
在△ABO中,∠CAB=30°,∠AOB=60°,
可得∠ABO=90°,即AB⊥OB,
則AB為圓O的切線;

(2)解:∵OB=2,∠BOD=60°,
的長度l==π.
點評:此題考查了切線的判定,等腰三角形的性質(zhì),三角形的外角性質(zhì),以及弧長公式的運用,切線的判定方法有兩種:有點連接,證明垂直;無點作垂線,證明垂線段等于半徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知CD是⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數(shù)是50°,則∠C的度數(shù)是( 。
A、25°B、30°C、40°D、50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O交CA于點E,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)若AC⊥BC,且AC=8,BC=6,求切線GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知CD是⊙O的直徑,弦DE∥半徑OA,∠D=50°,∠C=( 。
A、50°B、40°C、25°D、20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•蒼梧縣二模)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求
OCAC
的值.

查看答案和解析>>

同步練習冊答案