【題目】根據(jù)要求回答問題:
(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,求線段BE與AF的數(shù)量關(guān)系

(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

【答案】
(1)解:在Rt△ABC中,AB=AC=2,

根據(jù)勾股定理得,BC= AB=2

點(diǎn)D為BC的中點(diǎn),

∴AD= BC= ,

∵四邊形CDEF是正方形,

∴AF=EF=AD= ,

∵BE=AB=2,

∴BE= AF,


(2)解:無變化;

如圖2,在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= =

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC= ,

∵∠FCE=∠ACB=45°,

∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

,

∴BE= AF,

∴線段BE與AF的數(shù)量關(guān)系無變化


(3)解:當(dāng)點(diǎn)E在線段AF上時(shí),如圖2,

由(1)知,CF=EF=CD= ,

在Rt△BCF中,CF= ,BC=2 ,

根據(jù)勾股定理得,BF= ,

∴BE=BF﹣EF= ,

由(2)知,BE= AF,

∴AF= ﹣1,

當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上時(shí),如圖3,

在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= =

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC= ,

,

∵∠FCE=∠ACB=45°,

∴∠FCB+∠ACB=∠FCB+∠FCE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

,

∴BE= AF,

由(1)知,CF=EF=CD= ,

在Rt△BCF中,CF= ,BC=2 ,

根據(jù)勾股定理得,BF= ,

∴BE=BF+EF= +

由(2)知,BE= AF,

∴AF= +1.

即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,線段AF的長(zhǎng)為 ﹣1或 +1.


【解析】(1)先利用等腰直角三角形的性質(zhì)得出AD= ,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出 ,同理得出 ,夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;(3)分兩種情況計(jì)算,當(dāng)點(diǎn)E在線段BF上時(shí),如圖2,先利用勾股定理求出EF=CF=AD= ,BF= ,即可得出BE= ,借助(2)得出的結(jié)論,當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上,同前一種情況一樣即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解黔東南州某縣2016屆中考學(xué)生的體育考試得分情況,從該縣參加體育考試的4 000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體育考試成績(jī)作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計(jì)表和頻數(shù)直方圖.

成績(jī)分組

頻數(shù)

25≤x<30

4

30≤x<35

m

35≤x<40

24

40≤x<45

36

45≤x<50

n

50≤x<55

4

(1)求m,n的值,并補(bǔ)全頻數(shù)直方圖;

(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請(qǐng)問該縣中考體育成績(jī)優(yōu)秀的學(xué)生人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC∥BD,要使△ABC≌△BAD需再補(bǔ)充一個(gè)條件,下列條件中,不能選擇的是( )

A. BCAD B. AC=BD C. BC=AD D. C=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.

1)把△ABC平移至的位置,使點(diǎn)A對(duì)應(yīng),得到△;

2)圖中可用字母表示,與線段平行且相等的線有:________;

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,ABC=60°,AB=4,AD=8,點(diǎn)E,F(xiàn)分別是邊BC,AD的中點(diǎn),點(diǎn)M是AE與BF的交點(diǎn),點(diǎn)N是CF與DE的交點(diǎn),則四邊形ENFM的周長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形ABCD中,∠A=x,∠C=y,(x180°,y180°).

1)∠ABC+ADC=_____(用含x、y的代數(shù)式表示);

2)如圖1,若x=y=90°,DE平分∠ADCBF平分與∠ABC相鄰的外角,請(qǐng)寫出DEBF的位置關(guān)系,并說明理由.

3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線所在直線構(gòu)成的銳角,

①當(dāng)xy時(shí),若x+y=140°,∠DFB=30°試求x、y

②小明在作圖時(shí),發(fā)現(xiàn)∠DFB不一定存在,請(qǐng)直接指出x、y滿足什么條件時(shí),∠DFB不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把三張形狀、大小均相同但畫面不同的風(fēng)景圖片都按同樣的方式剪成相同的兩片,然后堆放到一起混合洗勻,背面朝上,從這堆圖片中隨機(jī)抽出兩張,這兩張圖片恰好能組成一張?jiān)L(fēng)景圖片的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)數(shù)軸上點(diǎn)B表示的數(shù)是   ,點(diǎn)P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).求:

①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q相遇?

②當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、F、C、D在同一直線上,AB∥DE,AC=DF,AB=DE.
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=8,BC=6,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案