【題目】如圖,是一張長方形紙片(其中AB∥CD),點(diǎn)E,F分別在邊AB,AD上.把這張長方形紙片沿著EF折疊,點(diǎn)A落在點(diǎn)G處,EG交CD于點(diǎn)H.若∠BEH=4∠AEF,則∠CHG的度數(shù)為( )
A.108°B.120°C.136°D.144°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、兩點(diǎn)的坐標(biāo)分別為,,直線與反比例函數(shù)的圖象相交于點(diǎn)和點(diǎn).
(1)求直線與反比例函數(shù)的解析式;
(2)求的度數(shù);
(3)將繞點(diǎn)順時針方向旋轉(zhuǎn)角(為銳角),得到,當(dāng)為多少度時,并求此時線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時針順序排列.
(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,
①求k的值;
②作線段CD,使CD∥AB且CD=AB,并簡述作法;
(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),
①求m,n的值;
②點(diǎn)P(a,b)是雙曲線y=第一象限上一動點(diǎn),當(dāng)S△APC≥24時,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,,點(diǎn)在上,且,點(diǎn)是上一動點(diǎn),連接,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到線段,若要使點(diǎn)恰好在上,則的長為().
A. 4B. 5C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為平行四邊形的邊上一動點(diǎn),過點(diǎn)作直線垂直于,且直線與平行四邊形的另一邊交于點(diǎn).當(dāng)點(diǎn)從勻速運(yùn)動時,設(shè)點(diǎn)的運(yùn)動時間為,的面積為,能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,E為AC上一點(diǎn),連接BE,將△BEC旋轉(zhuǎn),使點(diǎn)C落在BC上的點(diǎn)D處,點(diǎn)B落在BC上方的點(diǎn)F處,點(diǎn)E落在點(diǎn)C處,連接AF.求證:四邊形ABDF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得S△PAB=S△DAB?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F是邊長為4的正方形ABCD邊AD、AB上的動點(diǎn),且AF=DE,BE交CF于點(diǎn)P,在點(diǎn)E、F運(yùn)動的過程中,PA的最小值為( 。
A.2B.2C.4﹣2D.2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且S△CAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com