【題目】如圖所示,在平面直角坐標系中xOy中,拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:y=kx+b與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)求A、B兩點的坐標及拋物線的對稱軸;
(2)求直線l的函數(shù)表達式(其中k、b用含a的式子表示);
(3)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為 ,求a的值;
(4)設P是拋物線對稱軸上的一點,點Q在拋物線上,以點A、D、P、Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
【答案】
(1)
解:當y=0時,ax2﹣2ax﹣3a=0,
解得:x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
對稱軸為直線x= =1
(2)
解:∵直線l:y=kx+b過A(﹣1,0),
∴0=﹣k+b,
即k=b,
∴直線l:y=kx+k,
∵拋物線與直線l交于點A,D,
∴ax2﹣2ax﹣3a=kx+k,
即ax2﹣(2a+k)x﹣3a﹣k=0,
∵CD=4AC,
∴點D的橫坐標為4,
∴﹣3﹣ =﹣1×4,
∴k=a,
∴直線l的函數(shù)表達式為y=ax+a
(3)
解:過E作EF∥y軸交直線l于F,設E(x,ax2﹣2ax﹣3a),
則F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,
∴S△ACE=S△AFE﹣S△CEF= (ax2﹣3ax﹣4a)(x+1)﹣ (ax2﹣3ax﹣4a)x= (ax2﹣3ax﹣4a)= a(x﹣ )2﹣ a,
∴△ACE的面積的最大值=﹣ a,
∵△ACE的面積的最大值為 ,
∴﹣ a= ,
解得a=﹣ ;
(4)
解:以點A、D、P、Q為頂點的四邊形能成為矩形,
令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得:x1=1,x2=4,
∴D(4,5a),
∵拋物線的對稱軸為直線x=1,
設P(1,m),
①若AD是矩形ADPQ的一條邊,
則易得Q(﹣4,21a),
m=21a+5a=26a,則P(1,26a),
∵四邊形ADPQ是矩形,
∴∠ADP=90°,
∴AD2+PD2=AP2,
∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,
即a2= ,
∵a<0,
∴a=﹣ ,
∴P(1,﹣ );
②若AD是矩形APDQ的對角線,
則易得Q(2,﹣3a),
m=5a﹣(﹣3a)=8a,則P(1,8a),
∵四邊形APDQ是矩形,
∴∠APD=90°,
∴AP2+PD2=AD2,
∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,
即a2= ,
∵a<0,
∴a=﹣ ,
∴P(1,﹣4),
綜上所述,點A、D、P、Q為頂點的四邊形能成為矩形,點P(1,﹣ )或(1,﹣4).
【解析】(1)解方程即可得到結論;(2)根據直線l:y=kx+b過A(﹣1,0),得到直線l:y=kx+k,解方程得到點D的橫坐標為4,求得k=a,得到直線l的函數(shù)表達式為y=ax+a;(3)過E作EF∥y軸交直線l于F,設E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根據三角形的面積公式列方程即可得到結論;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),設P(1,m),①若AD是矩形ADPQ的一條邊,②若AD是矩形APDQ的對角線,列方程即可得到結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=60°,點O從A點出發(fā),以2m/s的速度沿∠BAC的角平分線向右運動,在運動過程中,以O為圓心的圓始終保持與∠BAC的兩邊相切,設⊙O的面積為S(cm2),則⊙O的面積S與圓心O運動的時間t(s)的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正確的是( )
A.①③
B.②③
C.①④
D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | 1 |
根據圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學生?
(2)請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;
(3)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下說法: ①關于x的方程x+ =c+ 的解是x=c(c≠0);
②方程組 的正整數(shù)解有2組;
③已知關于x,y的方程組 ,其中﹣3≤a≤1,當a=1時,方程組的解也是方程x+y=4﹣a的解;
其中正確的有( )
A.②③
B.①②
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,點P是邊AB上的一個動點(不與點A、點B重合),點Q在邊AD上,將△CBP和△QAP分別沿PC、PQ折疊,使B點與E點重合,A點與F點重合,且P、E、F三點共線.
(1)若點E平分線段PF,則此時AQ的長為多少?
(2)若線段CE與線段QF所在的平行直線之間的距離為2,則此時AP的長為多少?
(3)在“線段CE”、“線段QF”、“點A”這三者中,是否存在兩個在同一條直線上的情況?若存在,求出此時AP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.
(1)將圖補充完整;
(2)本次共抽取員工人,每人所創(chuàng)年利潤的眾數(shù)是 , 平均數(shù)是;
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上位優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com