【題目】如圖,已知中,厘米,厘米,點為的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等, 與是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經(jīng)過多長時間點P與點Q第一次在的哪條邊上相遇?
【答案】(1)①,理由見解析;②秒,厘米/秒;(2)經(jīng)過秒,點與點第一次在邊上相遇
【解析】
(1)①根據(jù)“路程=速度×時間”可得,然后證出,根據(jù)等邊對等角證出,最后利用SAS即可證出結論;
②根據(jù)題意可得,若與全等,則,根據(jù)“路程÷速度=時間”計算出點P的運動時間,即為點Q運動的時間,然后即可求出點Q的速度;
(2)設經(jīng)過秒后點與點第一次相遇,根據(jù)題意可得點與點第一次相遇時,點Q比點P多走AB+AC=20厘米,列出方程,即可求出相遇時間,從而求出點P運動的路程,從而判斷出結論.
解:(1)①∵秒,
∴厘米,
∵厘米,點為的中點,
∴厘米.
又∵厘米,
∴厘米,
∴.
又∵,
∴,
在△BPD和△CQP中
∴.
②∵,
∴,
又∵與全等,
,
則,
∴點,點運動的時間秒,
∴厘米/秒.
(2)設經(jīng)過秒后點與點第一次相遇,
∵
∴點與點第一次相遇時,點Q比點P多走AB+AC=20厘米
∴,
解得秒.
∴點共運動了厘米.
∵,
∴點、點在邊上相遇,
∴經(jīng)過秒,點與點第一次在邊上相遇.
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰△ABC中,∠BAC=90°,BC=4,P為BC上一動點,∠MPN=45°,PM、PN分別與AB、AC交于點E、F,且PM⊥AB,BE=x.
(1)若P點在BC上運動,求四邊形AEPF的面積(用x的代數(shù)式表示)并寫出x的取值范圍
(2)當點P在BC上運動時,△EPF能否為直角三角形,若能,請寫出此時x的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①如果兩個三角形全等,那么這兩個三角形一定成軸對稱;②數(shù)軸上的點和實數(shù)一一對應;③若,則;④兩個無理數(shù)的和一定為無理數(shù);⑤精確到十分位;⑥如果一個數(shù)的算術平方根等于它本身,那么這個數(shù)是0.其中正確的說法有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC
(1)填空:如圖1,∠B= °,∠C= °;
(2)如圖2,若M為線段BC上的點,過M作MH⊥AD,交AD的延長線于點H,分別交直線AB、AC與點N、E.
①求證:△ANE是等腰三角形;
②線段BN、CE、CD之間的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一把三角尺放在邊長為2的正方形ABCD上(正方形四個內角為90°,四邊都相等),并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC交于點Q。
探究:(1)當點Q在邊CD 上時,線段PQ 與線段PB之間有怎樣的大小關系?試證明你觀察得到結論;
(2)當點Q在邊CD 上時,如果四邊形 PBCQ 的面積為1,求AP長度;
(3)當點P在線段AC 上滑動時,△PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點Q的位置,并求出相應的AP的長;如果不可能,試說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數(shù)不超過40,每件提成4元;若當日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:
(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com