(2013•天津)如圖,PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為
55
55
(度).
分析:首先連接OA,OB,由PA、PB分別切⊙O于點A、B,根據(jù)切線的性質(zhì)可得:OA⊥PA,OB⊥PB,然后由四邊形的內(nèi)角和等于360°,求得∠AOB的度數(shù),又由圓周角定理,即可求得答案.
解答:解:連接OA,OB,
∵PA、PB分別切⊙O于點A、B,
∴OA⊥PA,OB⊥PB,
即∠PAO=∠PBO=90°,
∴∠AOB=360°-∠PAO-∠P-∠PBO=360°-90°-70°-90°=110°,
∴∠C=
1
2
∠AOB=55°.
故答案為:55.
點評:此題考查了切線的性質(zhì)以及圓周角定理.此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,在△ABC中,AC=BC,點D、E分別是邊AB、AC的中點,將△ADE繞點E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖是由3個相同的正方體組成的一個立體圖形,它的三視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,是一對變量滿足的函數(shù)關(guān)系的圖象,有下列3個不同的問題情境:
①小明騎車以400米/分的速度勻速騎了5分,在原地休息了4分,然后以500米/分的速度勻速騎回出發(fā)地,設(shè)時間為x分,離出發(fā)地的距離為y千米;
②有一個容積為6升的開口空桶,小亮以1.2升/分的速度勻速向這個空桶注水,注5分后停止,等4分后,再以2升/分的速度勻速倒空桶中的水,設(shè)時間為x分,桶內(nèi)的水量為y升;
③矩形ABCD中,AB=4,BC=3,動點P從點A出發(fā),依次沿對角線AC、邊CD、邊DA運動至點A停止,設(shè)點P的運動路程為x,當(dāng)點P與點A不重合時,y=S△ABP;當(dāng)點P與點A重合時,y=0.
其中,符合圖中所示函數(shù)關(guān)系的問題情境的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案