定義:a是不為1的有理數(shù),把
1
1-a
稱為a的差倒數(shù).如2的差倒數(shù)為
1
1-2
=-1
;-1的差倒數(shù)為
1
1-(-1)
=
1
2
.若a1=-
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推,求a2013的值.
分析:依次計算出a2、a3、a4、a5,即可發(fā)現(xiàn)每3個數(shù)為一個循環(huán),然后用2013除以3,即可得出答案.
解答:解:∵a1=-
1
3
,a2是a1差倒數(shù),
∴a2=
1
1-(-
1
3
)
=
3
4
,
∵a3是a2的差倒數(shù),
∴a3=
1
1-
3
4
=4
∵a4是a3的差倒數(shù),
∴a4=
1
1-4
=-
1
3
;
∵2013÷3=671,
∴a2013=4.
點評:此題主要考查了新定義以及數(shù)字變化規(guī)律,根據(jù)已知得出數(shù)據(jù)之間的變化規(guī)律是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對任意有理數(shù)x、y定義運算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-單項式乘以多項式(帶解析) 題型:解答題

對任意有理數(shù)x、y定義運算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-單項式乘以多項式(解析版) 題型:解答題

對任意有理數(shù)x、y定義運算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對任意有理數(shù)x、y定義運算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

對任意有理數(shù)x、y定義運算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步練習(xí)冊答案