【題目】若m,n互為相反數(shù),則m-4+n=________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段和射線交于點.
()利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法).
①在射線上作一點,使,連接;
②作的角平分線交于點;
③在射線上作一點,使,連接.
()在()所作的圖形中,通過觀察和測量可以發(fā)現(xiàn),請將下面的證明過程補充完整.
證明:∵,
∴____________________,①
∵平分,
∴,
∴__________,②
∵,
∴,
∵,
∴,
∴,
∴.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,線段AB的兩個端點分別為A(2,3),B(-1,2).將線段AB通過平移后得到線段A′B′,若A的對應(yīng)點為A′(7,6),則B的對應(yīng)點B′的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:
甲:8,8,8,8,9
乙:5,9,7,10,9
(1)填寫下表
(2)教練根據(jù)5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差
(填“變大”“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點C與點D重合,讓△ABC沿這條直線向右平移,直到點A與點E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
若a,b都是非負實數(shù),則a+b≥2.當(dāng)且僅當(dāng)a=b時,“=”成立.
證明: ∵(-)2≥0,∴a-2+b≥0.
∴a+b≥2.當(dāng)且僅當(dāng)a=b時,“=”成立.
舉例應(yīng)用:
已知x>0,求函數(shù)y=2x+的最小值.
解:y=2x+≥2=4.當(dāng)且僅當(dāng)2x=,即x=1時,“=”成立.
當(dāng)x=1時,函數(shù)取得最小值,y最小=4.
問題解決:
汽車的經(jīng)濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛(含70公里和110公里),每公里耗油(+)升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com