【題目】如圖,等腰直角三角形ABC,AB=BC,直角頂點(diǎn)B在直線PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB與△BEC全等嗎?為什么?
(2)圖1中,AD、DE、CE有怎樣的等量關(guān)系?說(shuō)明理由.
(3)將直線PQ繞點(diǎn)B旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,那么AD、DE、CE有怎樣的等量關(guān)系?直接寫出結(jié)果.
【答案】(1)△ADB≌△BEC,理由見(jiàn)解析;(2)CE+AD=DE,理由見(jiàn)解析;(3)CE﹣AD=DE,理由見(jiàn)解析;
【解析】
(1)求出∠ADB=∠ABC=∠BEC=90°,求出∠DAB=∠CBE,根據(jù)AAS推出△ADB≌△BEC即可;
(2)根據(jù)全等得出AD=BE,CE=DB,即可求出答案;
(3)證明過(guò)程和(1)(2)類似.
解:(1)△ADB≌△BEC,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
,
∴△ADB≌△BEC(AAS);
(2)CE+AD=DE,
理由是:∵△ADB≌△BEC,
∴AD=BE,CE=DB,
∵DB+BE=DE,
∴CE+AD=DE;
(3)CE-AD=DE,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
,
∴△ADB≌△BEC(AAS),
∴AD=BE,CE=DB,
∵DB-BE=DE,
∴CE-AD=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,AB=10cm,點(diǎn)P由點(diǎn)C出發(fā)以每秒2cm的速度沿CA向點(diǎn)A運(yùn)動(dòng)(不運(yùn)動(dòng)至A點(diǎn)),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當(dāng)點(diǎn)P運(yùn)動(dòng)2秒鐘時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解七年級(jí)學(xué)生的身體素質(zhì)情況,體育老師對(duì)該年級(jí)部分學(xué)生進(jìn)行了一分鐘跳繩次數(shù)的測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)參加測(cè)試的學(xué)生有多少人?
(2)求,的值,并把頻數(shù)直方圖補(bǔ)充完整.
(3)若該年級(jí)共有名學(xué)生,估計(jì)該年級(jí)學(xué)生一分鐘跳繩次數(shù)不少于次的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法計(jì)算結(jié)果很簡(jiǎn)單,由此又發(fā)現(xiàn)一個(gè)新的乘法公式: _________________________(請(qǐng)用含a、b的字母表示)
(3)下列各式能用你發(fā)現(xiàn)的乘法公式計(jì)算的是( 。
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式計(jì)算: =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B=40°,過(guò)點(diǎn)A的直線將這個(gè)三角形分成兩個(gè)等腰三角形,則∠C的度數(shù)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A、C在坐標(biāo)軸上,,將矩形沿折疊,使點(diǎn)A與點(diǎn)C重合.
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P從O出發(fā),沿折線方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng),到達(dá)終點(diǎn)E時(shí)停止運(yùn)動(dòng),設(shè)P的運(yùn)動(dòng)時(shí)間為t,的面積為S,求S與t的關(guān)系式,直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)時(shí),在平面直角坐標(biāo)系中是否存在點(diǎn)Q,使得以點(diǎn)P、E、G、Q為頂點(diǎn)的四邊形為平行四邊形?若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.
(1)求證:OE=OF;
(2)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),試判斷四邊形AECF的形狀并說(shuō)明理由;
(3)在(2)的前提下△ABC滿足什么條件,四邊形AECF是正方形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正比例函數(shù)y=-3x的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),點(diǎn)C在x軸負(fù)半軸上,AC=AO,△ACO的面積為12.
(1)求k的值;
(2)根據(jù)圖象,當(dāng)y<y時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com