【題目】如圖,點AO,B在同一直線上,射線OD和射線OE分別平分∠AOC和∠BOC.

1)當∠BOE=25°時,求∠AOD的度數(shù)

2)在圖中找出∠COD的補角,并說明理由.

【答案】1)∠AOD=65°;(2)∠COD的補角是∠BOD.理由見解析.

【解析】

1)根據(jù)圖形,利用角平分線的性質(zhì)及平角的定義即可求出角的度數(shù);(2)根據(jù)互補的兩個角的和等于180°解答即可.

1)∵OE平分∠BOC,∠BOE=25°,

∴∠BOC=50°,

∴∠AOC=180°-BOC=130°,

OD平分∠AOC,

∴∠AOD=COD=65°.

2)∠COD的補角是∠BOD.理由如下:

∵∠AOD+BOD=180°,∠AOD=COD,

∴∠COD+BOD=180°,

∴∠COD的補角是∠BOD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,MN、EF分別表示兩個互相平行的鏡面,一束光線AB照射到鏡面MN上,反射光線為BC,此時∠1=2;光線BC經(jīng)過鏡面EF反射后的光線為CD,此時∠3=4.試判斷ABCD的位置關(guān)系,你是如何思考的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,點O是△ABC內(nèi)的一點,BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大;

(3)設AOB=α,那么當α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D在AB上,在下列四個條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能滿足△ADC與△ACB相似的條件是( )

A.①、②、③
B.①、③、④
C.②、③、④
D.①、②、④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,某超市從一樓到二樓有一自動扶梯,圖②是側(cè)面示意圖.已知自動扶梯AB的坡度為1∶2.4,AB的長度是13米,MN是二樓樓頂,MNPQCMN上處在自動扶梯頂端B點正上方的一點,BCMN , 在自動扶梯底端A處測得C點的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )

A.10.8米
B.8.9米
C.8.0米
D.5.8米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去年暑假,某旅行社組織了一個中學生夏令營活動,共有253名中學生報名參加,打算選租甲、乙兩種客車載客到指定地點.甲客車2輛、乙客車1輛可坐110人,甲客車3輛、乙客車2輛可坐180人.旅行前,旅行社每輛車安排了一名帶隊老師,因此一共安排了7名帶隊老師.

(1)甲、乙兩種客車各可坐多少人?

(2)請幫助旅行社設計租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊修建一條總長為1860米的公路,在使用舊設備施工17天后,為盡快完成任務,工程隊引進了新設備,從而將工作效率提高了50%,結(jié)果比原計劃提前15天完成任務.
(1)工程隊在使用新設備后每天能修路多少米?
(2)在使用舊設備和新設備工作效率不變的情況下,工程隊計劃使用舊設備m天,使用新設備n(16≤n≤26)天修建一條總長為1500米的公路,使用舊設備一天需花費16000元,使用新設備一天需花費25000元,當m、n分別為何值時,修建這條公路的總費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出A1點的坐標及sin∠B1A1C1的值;
以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出 將△ABC放大后的△A2B2C2 , 并寫出A2點的坐標;
(2)若點D(a,b)在線段AB上,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O是Rt△ABC的外接圓,∠ACB=90°,AC平分∠BAD,CD⊥AD于D,AD交⊙O于E.

(1)求證:CD為⊙O的切線;
(2)若⊙O的直徑為8cm,CD=2 cm,求弦AE的長.

查看答案和解析>>

同步練習冊答案