如圖,△PAB與△PDC是兩個(gè)全等的等邊三角形,且PA⊥PD,有下列四個(gè)結(jié)論:
①∠PBC=;
②AD∥BC;
③直線PC與AB垂直;
④四邊形ABCD是軸對稱圖形.
其中正確結(jié)論的個(gè)數(shù)是
[ ]
選D,4個(gè)結(jié)論都正確. △PAB與△PDC是兩個(gè)全等的等邊三角形,則AB=BP=AP=CP=DP=CD. ∠BPC=360°-∠APB-∠CPD-∠APD=150°,∵PB=PC,∴∠PBC=∠PCB=(180°-∠BPC)=15°,①正確; △APD是等腰直角三角形,∴∠PAD=45°,∴∠DAB=∠PAD+∠BAP=45°+60°=105°,∠ABC=∠ABP+∠PBC=60°+15°=75°,∴∠DAB+∠ABC=105°+75°=180°,∴AD∥BC,②正確; ∠ABC=75°,∠PCB=∠PBC=15°,∴∠ABC與∠PCB互余,則∠ABC與∠PCB構(gòu)成的三角形是直角三角形,③正確; 由AD∥BC知四邊形ABCD是梯形,可以計(jì)算出∠ABC=∠DCB=75°,∴四邊形ABCD是等腰梯形,等腰梯形是軸對稱圖形,④正確.
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年湖南省婁底市新化縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com