【題目】如圖,一次函數(shù)y=﹣x+4的圖象與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)AB中點(diǎn)D的直線CD交x軸于點(diǎn)C,且經(jīng)過(guò)第一象限的點(diǎn)E(6,4).
(1)求A,B兩點(diǎn)的坐標(biāo)及直線CD的函數(shù)表達(dá)式;
(2)連接BE,求△DBE的面積;
(3)連接DO,在坐標(biāo)平面內(nèi)找一點(diǎn)F,使得以點(diǎn)C,O,F(xiàn)為頂點(diǎn)的三角形與△COD全等,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).
【答案】(1)A(0,4),B(4,0),y=x+1;(2)6;(3)當(dāng)點(diǎn)F在第一象限時(shí),點(diǎn)F的坐標(biāo)為(2,2);當(dāng)點(diǎn)F在第二象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,2);當(dāng)點(diǎn)F在第三象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,﹣2);當(dāng)點(diǎn)F在第四象限時(shí),點(diǎn)F的坐標(biāo)為(2,﹣2).
【解析】
(1)依據(jù)一次函數(shù)y=-x+4,求得A(0,4),B(4,0),依據(jù)D是AB的中點(diǎn),可得D(2,2),運(yùn)用待定系數(shù)法即可得到直線CD的函數(shù)表達(dá)式;
(2)先求得C(-2,0),BC=2=4=6,再根據(jù)△DBE的面積=△BCE的面積-△BCD的面積,進(jìn)行計(jì)算即可;
(3)在四個(gè)象限內(nèi)分別找到點(diǎn)F,使得以點(diǎn)C,O,F(xiàn)為頂點(diǎn)的三角形與△COD全等.
(1)一次函數(shù)y=﹣x+4,令x=0,則y=4;令y=0,則x=4,
∴A(0,4),B(4,0),
∵D是AB的中點(diǎn),
∴D(2,2),
設(shè)直線CD的函數(shù)表達(dá)式為y=kx+b,則,解得,
∴直線CD的函數(shù)表達(dá)式為y=x+1;
(3)y=x+1,令y=0,則x=﹣2,
∴C(﹣2,0),
∴BC=2=4=6,
∴△DBE的面積=△BCE的面積﹣△BCD的面積=×6×(4﹣2)=6;
(3)如圖所示,
當(dāng)點(diǎn)F在第一象限時(shí),點(diǎn)F與點(diǎn)D重合,即點(diǎn)F的坐標(biāo)為(2,2);
當(dāng)點(diǎn)F在第二象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,2);
當(dāng)點(diǎn)F在第三象限時(shí),點(diǎn)F的坐標(biāo)為(﹣4,﹣2);
當(dāng)點(diǎn)F在第四象限時(shí),點(diǎn)F的坐標(biāo)為(2,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,過(guò)點(diǎn)O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,AC:BC=1:2,點(diǎn)D為弧AB的中點(diǎn),BE⊥CD垂足為E.
(1)求∠BCE的度數(shù);
(2)求證:D為CE的中點(diǎn);
(3)連接OE交BC于點(diǎn)F,若AB= ,求OE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車計(jì)費(fèi)標(biāo)準(zhǔn)如下:行駛路程不超過(guò)3千米時(shí),收費(fèi)8元;行駛路程超過(guò)3千米的部分,按每千米1.60元計(jì)費(fèi).
(1)求出租車收費(fèi)y(元)與行駛路程x(千米)之間的函數(shù)關(guān)系式;
(2)若某人一次乘出租車時(shí),付出了車費(fèi)14.40元,求他這次乘坐了多少千米的路?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)根據(jù)下列敘述填依據(jù):
已知:如圖①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度數(shù).
解:因?yàn)椤?/span>B+∠BFE=180°,
所以AB∥EF( ).
又因?yàn)?/span>AB∥CD,
所以CD∥EF( ).
所以∠CDF+∠DFE=180°( ).
所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.
(2)根據(jù)以上解答進(jìn)行探索:如圖②,AB∥EF,∠BDF與∠B,∠F有何數(shù)量關(guān)系?并說(shuō)明理由.
(3)如圖③④,AB∥EF,你能探索出圖③、圖④兩個(gè)圖形中,∠BDF與∠B,∠F的數(shù)量關(guān)系嗎?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),連接AD,E,F(xiàn)分別是AD和AD延長(zhǎng)線上的點(diǎn).且DE=DF,連接BF,CE,下列說(shuō)法中:①△ABD和△ACD的面積相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正確的說(shuō)法有__________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準(zhǔn)備運(yùn)給甲、乙兩地的承包商進(jìn)行包銷.該基地用大、小兩種貨車共18輛恰好能一次性運(yùn)完這批紅薯,已知這兩種貨車的載重量分別為14噸/噸和8噸/輛,運(yùn)往甲、乙兩地的運(yùn)費(fèi)如下表:
車型 | 運(yùn)費(fèi) | |
運(yùn)往甲地/(元/輛) | 運(yùn)往乙地/(元/輛) | |
大貨車 | 720 | 800 |
小貨車 | 500 | 650 |
(1)求這兩種貨車各用多少輛;
(2)如果安排10輛貨車前往甲地,其余貨車前往乙地,其中前往甲地的大貨車為a輛,總運(yùn)費(fèi)為w元,求w關(guān)于a的函數(shù)關(guān)系式;
(2)在(2)的條件下,若甲地的承包商包銷的紅薯不少于96噸,請(qǐng)你設(shè)計(jì)出使總運(yùn)費(fèi)最低的貨車調(diào)配方案,并求出最低總運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠BAC=90°,∠BAD=30°,AD=AE,則∠EDC的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:
(1)如果∠1=∠B,那么_______∥_______,根據(jù)是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根據(jù)是__________________________;
(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com