【題目】下列說法中正確的是( )
A.9的平方根為3?
B. 化簡后的結(jié)果是
C. 最簡二次根式?
D.﹣27沒有立方根
【答案】B
【解析】解:A、9的平方根是±3,所以選項A不正確; B、 = = ,所以選項B正確;
C、 =2 ,所以 不是最簡二次根式,選項C不正確;
D、﹣27的立方根是﹣3,所以選項D不正確.
故選B.
【考點精析】認(rèn)真審題,首先需要了解最簡二次根式(最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點),還要掌握平方根的基礎(chǔ)(如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M=x2-2xy+y2 , N=2x2-6xy+3y2 , 求3M-[2M-N-4(M-N)]的值,其中x=-5,y=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺規(guī)作圖,在CA的延長線上截取AD=AB,并連接BD(不寫作法,保留作圖痕跡);
(2)(4分)求∠BDC的度數(shù);
(3)(4分)定義:在直角三角形中,一個銳角A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即,根據(jù)定義,利用圖形求cot22.5°的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAD,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.
(1)若AB=1,則BC的長=;
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.
如圖,∠BAE、∠CBF、∠ACD是△ABC的三個外角.
求證∠BAE+∠CBF+∠ACD=360°.
證法1:∵ ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
請把證法1補充完整,并用不同的方法完成證法2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,D為BC的中點,在AC邊上存在一點E,連接ED,EB,則△BDE周長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2,請在圖中畫出△A2BC2,并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com