【題目】如圖,在正方形ABCD中,AB5,點MCD的邊上,且DM2,AEMADM關于AM所在的直線對稱,將ADM按順時針方向繞點A旋轉90°得到ABF,連接EF,則線段EF的長為( 。

A.B.C.D.

【答案】A

【解析】

連接BM.先判定FAE≌△MABSAS),即可得到EFBM.再根據(jù)BCCDAB5CM3,利用勾股定理即可得到,RtBCM中,BM,進而得出EF的長.

解:如圖,連接BM

∵△AEMADM關于AM所在的直線對稱,

AEAD,∠MAD=∠MAE

∵△ADM按照順時針方向繞點A旋轉90°得到ABF,

AFAM,∠FAB=∠MAD

∴∠FAB=∠MAE

∴∠FAB+BAE=∠BAE+MAE

∴∠FAE=∠MAB

∴△FAE≌△MABSAS).

EFBM

∵四邊形ABCD是正方形,

BCCDAB5

DM2

CM3

∴在RtBCM中,BM

EF

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD米,點A、D、E在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°sinA,BC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三臺縣教育和體育局為幫助萬福村李大爺精準脫貧,在網(wǎng)上銷售李大爺自己手工做的竹簾,其成本為每張40元,當售價為每張80元時,每月可銷售100.為了吸引更多顧客,采取降價措施.據(jù)市場調查反映:銷售單價每降1元,則每月可多銷售5.設每張竹簾的售價為元(為正整數(shù)),每月的銷售量為

1)直接寫出的函數(shù)關系式;

2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?

3)李大爺深感扶貧政策給自己帶來的好處,為了回報社會,他決定每月從利潤中捐出200元資助貧困學生.為了保證捐款后每月利潤不低于4220元,求銷售單價應該定在什么范圍內?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4件同型號的產品中,有1件不合格品和3件合格品.

(1)從這4件產品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;

(2)從這4件產品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;

(3)在這4件產品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,射線BC交⊙O于點D,E是劣弧AD上一點,且,過點EEFBC于點F,延長FEBA的延長線交與點G

1)證明:GF是⊙O的切線;

2)若AG6,GE6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,于點的角平分線相交于點,為邊的中點,,則

A.125°B.145°C.175°D.190°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+cab、c為常數(shù),a≠0)的衍生直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于AB兩點(點A在點B的左側),與x軸負半軸交于點C

1)填空:該拋物線的衍生直線的解析式為 ,點A的坐標為 ,點B的坐標為

2)如圖,點M為線段CB上一動點,將ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若AMN為該拋物線的衍生三角形,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的衍生直線上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過三點

1)求拋物線的解析式;

2)在直線上方的拋物線上是否存在一點,使的面積等于的面積的一半?若存在,求出點的坐標;若不存在,說明理由;

3)點為拋物線上一動點,在軸上是否存在點,使以,,,為頂點的四邊形是平行四邊形?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案