如圖,拋物線y=-(x-1)2+4的頂點(diǎn)為A,與x軸相交于B、C兩點(diǎn),直線y=-2x+6經(jīng)過A、C兩點(diǎn),且點(diǎn)C的坐標(biāo)為(3,0),連接OA.
(1)求出點(diǎn)B的坐標(biāo)和直線OA的解析式.
(2)直線y=m(0<m<4)分別與AO、AC交于點(diǎn)E和F,若將△AEF沿EF折疊,設(shè)折疊后的△A'EF與△AOC重疊部分的面積為S.
①用含m的代數(shù)式表示線段EF的長(zhǎng).
②試求S與m的函數(shù)關(guān)系式.且當(dāng)m為何值時(shí),S有最大值?
(3)設(shè)直線y=m與y軸交于點(diǎn)Q,則在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)Q、P、C、B為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】分析:(1)由拋物線的解析式可得到拋物線的對(duì)稱軸解析式,而點(diǎn)B、C關(guān)于拋物線對(duì)稱軸對(duì)稱,而點(diǎn)C坐標(biāo)已知,則點(diǎn)B坐標(biāo)可求;
拋物線的解析式直接寫成了頂點(diǎn)式,則點(diǎn)A的坐標(biāo)可得,利用待定系數(shù)法即可得到直線OA的解析式.
(2)①直線OA、AC的解析式已知,令它們的函數(shù)值為m,即可得到點(diǎn)E、F的坐標(biāo),進(jìn)而能求出線段EF的長(zhǎng);
②分兩種情況考慮:
1、2≤m<4時(shí),△A′EF在△OAC內(nèi)部,它們的重疊部分是整個(gè)△A′EF,而△A′EF是由△AEF折疊所得,所以它們的面積相等,可據(jù)此思路求解;
2、0<m<2時(shí),△A′EF與△OAC的重疊部分是一個(gè)梯形,可先求出梯形的兩底長(zhǎng),而高易知(即m),則面積可求.
(3)由于平行四邊形的四個(gè)頂點(diǎn)順序沒有明確,所以要分兩種情況討論:
①線段QP是平行四邊形的對(duì)角線;由于平行四邊形是中心對(duì)稱圖形,所以此種情況下,點(diǎn)Q、P關(guān)于線段BC的中點(diǎn)對(duì)稱,即點(diǎn)Q、P的橫坐標(biāo)關(guān)于拋物線對(duì)稱軸對(duì)稱,聯(lián)立拋物線解析式不難得到點(diǎn)P的坐標(biāo);
②線段QP是平行四邊形的邊;已知BC=4,那么將點(diǎn)Q向左或向右平移4個(gè)單位后,必為點(diǎn)P,所以此時(shí)點(diǎn)P的橫坐標(biāo)為4或-4,代入拋物線解析式中即可得到點(diǎn)P的坐標(biāo).
解答:解:(1)由拋物線y=-(x-1)2+4知:頂點(diǎn)A(1,4),對(duì)稱軸 x=1;
∵點(diǎn)B、C關(guān)于拋物線對(duì)稱軸對(duì)稱,且C(3,0),
∴B(-1,0);
設(shè)直線OA的解析式為 y=kx,代入點(diǎn)A的坐標(biāo),得:k=4;
則直線OA:y=4x.

(2)①直線OA:y=4x中,當(dāng)y=m時(shí),x=;
則點(diǎn)E(,m),同理可求得F(,m);
故EF=-=
②當(dāng)點(diǎn)A′在x軸上時(shí),m=2,所以分兩種情況:
1、2≤m<4時(shí),△A′EF在△AOC內(nèi)部,它們的重疊部分是△A′EF;
S=S△AEF=××(4-m)=(4-m)2;
由于2≤m<4在對(duì)稱軸左側(cè),所以當(dāng)m=2,S有最大值,且:
Smax=(4-2)2=;
2、0<m<2時(shí),△A′EF與△AOC的重疊部分是梯形MNFE(如右圖);
GH=m,AH=4,則 AG=A′G=4-m,A′H=A′G-GH=4-m-m=4-2m;
在Rt△AOH中,OH=1,AH=4,∴tan∠OAH=tan∠EA′G=,同理可得:tan∠FA′G=tan∠CAH=;
∴MH=A′H×tan∠EA′G=(4-2m)×=1-,HN=A′H×tan∠FA′G=(4-2m)×=2-m,MN=MH+HN=3-;
S=S梯形MNFE=(EF+MN)GH=×(3-+3-)×m=-m2+3m=-(m-2+2;
則當(dāng)m=時(shí),S有最大值,且Smax=2;
綜上,S=,且當(dāng)m=時(shí),S有最大值,且最大值為2.

(3)由(1)知:B(-1,0)、C(3,0),則 BC=4;分兩種情況討論:
①當(dāng)QP為平行四邊形的對(duì)角線時(shí),點(diǎn)Q、P關(guān)于BC的中點(diǎn)對(duì)稱(因?yàn)槠叫兴倪呅问侵行膶?duì)稱圖形,且對(duì)稱中心為對(duì)角線的交點(diǎn));
故點(diǎn)P的橫坐標(biāo)為2,代入拋物線y=-(x-1)2+4中,得y=-(2-1)2+4=3;
則P1(2,3);
②當(dāng)QP為平行四邊形的邊時(shí),則點(diǎn)P的橫坐標(biāo)為4或-4;
當(dāng)x=4時(shí),y=-(x-1)2+4=-(4-1)2+4=-5;
當(dāng)x=-4時(shí),y=-(x-1)2+4=-(-4-1)2+4=-21;
則P2(4,-5)、P3(-4,-21);
綜上,存在符合條件的點(diǎn)P,且坐標(biāo)為(2,3)、(4,-5)、(-4,-21).
點(diǎn)評(píng):此題主要考查了函數(shù)解析式的確定、軸對(duì)稱圖形的性質(zhì)、圖形面積的求法以及平行四邊形的判定和性質(zhì)等綜合知識(shí).最后一題中,平行四邊形的各頂點(diǎn)排序沒有明確,是此題容易漏解的地方,一定要注意進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱;拋物線C1,C3關(guān)于y軸對(duì)稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個(gè),寫錯(cuò)、多寫記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行.直線y=-x+m過點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動(dòng)點(diǎn),過點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長(zhǎng)度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案