【題目】如圖,在△ABC中,AB=2,AC=4,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點D,則線段BD的長為 .
科目:初中數(shù)學 來源: 題型:
【題目】矩形紙片ABCD中,AB=5,AC=3,將紙片折疊,使點B落在邊CD上的B′處,折痕為AE.在折痕AE上存在一點P到邊CD的距離與到點B的距離相等,則此相等距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教研機構(gòu)為了解在校初中生閱讀數(shù)學教科書的現(xiàn)狀,隨機抽取某校部分初中學生進行了調(diào)查.依據(jù)相關數(shù)據(jù)繪制成以下不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題:
(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2 300名,請估計該校“不重視閱讀數(shù)學教科書”的初中生人數(shù);
(3)①根據(jù)上面的統(tǒng)計結(jié)果,談談你對該校初中生閱讀數(shù)學教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學教科書的情況,你認為應該如何進行抽樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點分別是上的點,分別交于,試說明.閱讀下面的解題過程,在橫線上補全推理過程或依據(jù).
解:(已知)
(______________________)
(等量代換)
(_____________________)
∴(__________________________)
又(已知)
(等量代換)
______(____________________________)
(_________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李大爺要圍成一個矩形菜園,菜園的一邊利用足夠長的墻,用籬笆圍成的另外三邊總長應恰好為24米.要圍成的菜園是如圖所示的矩形ABCD.設BC邊的長為x米,AB邊的長為y米,則y與x之間的函數(shù)關系式是( )
A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)
C. y=2x-24(0<x<12) D. y=x-12(0<x<24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一勞動節(jié)大酬賓!”,某商場設計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若x滿足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:設x-4=a,x-9=b,則(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
請仿照上面的方法求解下面問題:
(1)若x滿足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的邊長為x,E,F分別是AD、DC上的點,且AE=1,CF=3,長方形EMFD的面積是15,分別以MF、DF作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,點M,N分別在射線OA,OB上(都不與點O重合),且∠MPN與∠AOB互補.若∠MPN繞著點P轉(zhuǎn)動,那么以下四個結(jié)論:①PM=PN恒成立;②MN的長不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(-2,-1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.
(1)求該一次函數(shù)的解析式;
(2)求點C和點D的坐標;
(3)求△AOB的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com