【題目】如圖,在正方形ABCD中,AB4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度,沿線段AB方向勻速運(yùn)動(dòng),到達(dá)點(diǎn)B停止.連接DPAC于點(diǎn)E,以DP為直徑作OAC于點(diǎn)F,連接DFPF

1)求證:△DPF為等腰直角三角形;

2)若點(diǎn)P的運(yùn)動(dòng)時(shí)間t秒.

當(dāng)t為何值時(shí),點(diǎn)E恰好為AC的一個(gè)三等分點(diǎn);

將△EFP沿PF翻折,得到△QFP,當(dāng)點(diǎn)Q恰好落在BC上時(shí),求t的值.

【答案】1)詳見解析;(2①11

【解析】

1)要證明三角形DPF為等腰直角三角形,只要證明DFP90°DPFPDF45°即可,根據(jù)直徑所對(duì)的圓周角是90°和同弧所對(duì)的圓周角相等,可以證明DFP90°,DPFPDF45°,從而可以證明結(jié)論成立;

2根據(jù)題意,可知分兩種情況,然后利用分類討論的方法,分別計(jì)算出相應(yīng)的t的值即可,注意點(diǎn)PA出發(fā)到B停止,t≤4÷22;

根據(jù)題意,畫出相應(yīng)的圖形,然后利用三角形相似,勾股定理,即可求得t的值.

證明:(1四邊形ABCD是正方形,AC是對(duì)角線,

∴∠DAC45°,

O中,所對(duì)的圓周角是DAFDPF,

∴∠DAFDPF

∴∠DPF45°,

DPO的直徑,

∴∠DFP90°,

∴∠FDPDPF45°,

∴△DFP是等腰直角三角形;

2當(dāng)AEEC12時(shí),

ABCD,

∴∠DCEPAE,CDEAPE,

∴△DCE∽△PAE,

,

解得,t1

當(dāng)AEEC21時(shí),

ABCD

∴∠DCEPAE,CDEAPE,

∴△DCE∽△PAE

,

解得,t4,

點(diǎn)P從點(diǎn)AB,t的最大值是4÷22,

當(dāng)t4時(shí)不合題意,舍去;

由上可得,當(dāng)t1時(shí),點(diǎn)E恰好為AC的一個(gè)三等分點(diǎn);

如右圖所示,

∵∠DPF90°,DPFOPF

∴∠OPF90°,

∴∠DPA+∠QPB90°,

∵∠DPA+∠PDA90°,

∴∠PDAQPB

點(diǎn)Q落在BC上,

∴∠DAPB90°

∴△DAP∽△PBQ,

DAAB4,AP2t,DAP90°,

DP2PB42t,

設(shè)PQa,則PEaDEDPa2a,

∵△AEP∽△CED

,

,

解得,a,

PQ,

解得,t1=﹣1(舍去),t21

t的值是1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y (x>0)的圖象與邊長(zhǎng)是6的正方形OABC的兩邊AB,BC分別相交于MN 兩點(diǎn),△OMN的面積為10.若動(dòng)點(diǎn)Px軸上,則PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于拋物線與直線在同一直角坐標(biāo)系的圖象,其中不正確的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OAOB,ABx軸于點(diǎn)C,點(diǎn)A,1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得SAOP=SAOB,求點(diǎn)P的坐標(biāo);

3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020比佛利”無錫馬拉松賽將于322日鳴槍開跑,本次比賽設(shè)三個(gè)項(xiàng)目:A.全程馬拉松;B.半程馬拉松;C.迷你馬拉松.小明和小紅都報(bào)名參與該賽事的志愿者服務(wù)工作,若兩人都已被選中,屆時(shí)組委會(huì)隨機(jī)將他們分配到三個(gè)項(xiàng)目組.

1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為   ;

2)請(qǐng)利用樹狀圖或列表法求兩人被分配到同一個(gè)項(xiàng)目組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1cm,弦AB、CD的長(zhǎng)度分別為cm,1cm

1)求圓心O到弦AB的距離;

2)弦AC、BD所夾的銳角α的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線yk≠0)與直線yax+ba≠0)交于A,B兩點(diǎn),直線AB分別交x軸,y軸于C、D兩點(diǎn),若OAOC,A點(diǎn)坐標(biāo)為(4,3).

1)分別求出雙曲線與直線的函數(shù)表達(dá)式;

2)若P為雙曲線上一點(diǎn),且橫坐標(biāo)為2,H為直線AB上一點(diǎn),且PH+HC最小,延長(zhǎng)PHx軸于點(diǎn)E,將線段OE沿x軸平移得線段O'E',在平移過程中,是否存在某個(gè)位置使|BO'AE'|的值最大值,求出最大值并求出此時(shí)E點(diǎn)坐標(biāo).

3)在(2)的情況下,將直線OA沿線段CE平移,平移過程中交yx0)的圖象于MM與點(diǎn)A不重合)交x軸于點(diǎn)N,在平面內(nèi)找一點(diǎn)G,使M、N,E,G為頂點(diǎn)的四邊形為矩形?直接寫出G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點(diǎn)分別在軸和軸上,與雙曲線恰好交于的中點(diǎn). ,則的值為(

A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案