【題目】計(jì)算正確的是(  )

A. a3﹣a2=a B. (ab32=a2b5 C. (﹣2)0=0 D. 3a2a1=3a

【答案】D

【解析】A、不是同類項(xiàng),不能合并,故選項(xiàng)錯誤;

B、(ab32=a2b6,故選項(xiàng)錯誤;

C、(﹣2)0=1,故選項(xiàng)錯誤;

D、3a2a1=3a,故選項(xiàng)正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美麗的雪花扮靚了我們可愛的家鄉(xiāng),但高速公路清雪刻不容緩.某高速公路維護(hù)站引進(jìn)甲、乙兩種型號的清雪車,已知甲型清雪車比乙型清雪車每天多清理路段6千米,甲型清雪車清理90千米與乙型清雪車清理60千米路段所用的時間相同.

(1)甲型、乙型清雪車每天各清理路段多少千米?

(2)此公路維護(hù)站欲購置甲、乙兩種型號清雪車共20臺,甲型每臺30萬元,乙型每臺15萬元,若在購款不超過360萬元,甲型、乙型都購買的情況下,甲型清雪車最多可購買幾臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1); (2)

(3); (4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為2,0,BC=6,∠BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,⊙P過D,O,C三點(diǎn),拋物線y=ax2+bx+c過點(diǎn)D,B,C三點(diǎn).

1求拋物線的解析式;

2求證:ED是⊙P的切線;

3若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a.b.c是△ABC的三邊,且關(guān)于x的方程a(x2﹣1)﹣2cx+b(x2+1)=0有兩個相等的實(shí)數(shù)根,則△ABC是(  )

A. 等腰三角形 B. 直角三角形 C. 等邊三角形 D. 等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.

(1甲、乙兩種套房每套提升費(fèi)用各多少萬元?

(2如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

(3在(2的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0,市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( .

A.帶 B.帶 C.帶 D.帶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩個內(nèi)角的差等于第三個內(nèi)角,則它是( )

A. 銳角三角形B. 鈍角三角形C. 直角三角形D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,1)位于(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

同步練習(xí)冊答案