如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=x2+mx+n經(jīng)過(guò)點(diǎn)A(3,0)、B(0,-3),點(diǎn)P是直線(xiàn)AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t。
(1)分別求出直線(xiàn)AB和這條拋物線(xiàn)的解析式;
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線(xiàn)段PM最長(zhǎng)時(shí),求△ABM的面積;
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
解:(1)把A(3,0)B(0,-3)代入,
解得
所以?huà)佄锞(xiàn)的解析式是
設(shè)直線(xiàn)AB的解析式是y=kx+b,把A(3,0)B(0,-3)代入y=kx+b,
解得
所以直線(xiàn)AB的解析式是y=x-3;
(2)設(shè)點(diǎn)P的坐標(biāo)是(p,p-3),則M(p,),
因?yàn)閜在第四象限,
所以PM=
當(dāng)PM最長(zhǎng)時(shí),
此時(shí)
;
(3)若存在,則可能是:
①P在第四象限:平行四邊形OBMP ,PM=OB=3,PM最長(zhǎng)時(shí),所以不可能;
②P在第一象限平行四邊形OBPM,PM=OB=3,,
解得,(舍去),
所以P點(diǎn)的橫坐標(biāo)是;
③P在第三象限平行四邊形OBPM,PM=OB=3,,
解得(舍去),,
所以P點(diǎn)的橫坐標(biāo)是
所以P點(diǎn)的橫坐標(biāo)是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案