【題目】(1)如圖1,試探究其中∠1,∠2與∠3,∠4之間的關(guān)系,并證明.
(2)用(1)中的結(jié)論解決下列問題:如圖2,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).
【答案】(1)∠1+∠2=∠3+∠4(2)60°
【解析】
(1)由四邊形的內(nèi)角和是360°,以及鄰補(bǔ)角的和是180°求解即可;
(2)依據(jù)(1)的結(jié)論可知∠MDA+∠DAN=240°,由角平分線的定義可求得∠EDA+∠EAD=120°,最后在△ADE中由勾股定理可求得∠E的度數(shù).
(1)∠1+∠2=∠3+∠4,理由如下:
由四邊形的內(nèi)角和是360°可知:∠3+∠4+∠5+∠6=360°,
∵∠1+∠5=180°,∠2+∠6=180°,
∴∠1+∠2+∠5+∠6=360°,
∴∠1+∠2=∠3+∠4;
(2)由(1)可知∠MDA+∠DAN=∠B+∠C=240°,
∵AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,
∴∠EDA=∠MDA,∠EAD=∠DAN,
∴∠EDA+∠EAD=×(∠MDA+∠DAN)=×240°=120°,
∴∠E=180°-(∠EDA+∠EAD) =180°-120°=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字:
我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式_____;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)圖3中給出了若干個邊長為a和邊長為b的小正方形紙片及若干個邊長分別為a、b的長方形紙片,
①請按要求利用所給的紙片拼出一個幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2,
②再利用另一種計算面積的方法,可將多項式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊三角形紙片ABC,使點A落在BC邊上的點F,且折痕DE∥BC,若∠A=75°,∠C=60°,則∠BDF=____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結(jié)論的序號是 (請將所有正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分線交于點E,∠AEC等于( )
A.56° B.66° C.76° D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由下列條件可判定哪兩條直線平行,并說明根據(jù).
(1)∠1=∠2,________________________.
(2)∠A=∠3,________________________.
(3)∠ABC+∠C=180°,________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤.
回答下列問題:
(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)在求這20名學(xué)生每人植樹量的平均數(shù)時,小宇是這樣分析的:
① 小宇的分析是從哪一步開始出現(xiàn)錯誤的?
② 請你幫他計算出正確的平均數(shù),并估計這260名學(xué)生共植樹多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩種客車共7輛,已知甲種客車載客量是30人,乙種客車載客量是45人.其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需2300元.
(1)租用一輛甲種客車、一輛乙種客車各多少元?
(2)設(shè)租用甲種客車x輛,總租車費為y元,求y與x的函數(shù)關(guān)系;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時,總租車費最少,并求出這個最少費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com