【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點A逆時針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
【答案】(1)證明見解析(2)(3)沒有變化,理由見解析
【解析】(1)證明:∵四邊形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC。∴∠ABF+∠CBF=90°。
∵AE⊥BF,∴∠ABF+∠BAE=90°。∴∠BAE=∠CBF。
在△ABE和△BCF中,∵∠ABE=∠BCF,AB=BC,∠BAE=∠CBF,
∴△ABE≌△BCF(ASA)。
(2)解:∵正方形面積為3,∴AB=。
在△BGE與△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE。
∴。
又∵BE=1,∴AE2=AB2+BE2=3+1=4。
∴。
(3)解:沒有變化。理由如下:
∵AB=,BE=1,∴。∴∠BAE=30°。
∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′= AE′,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,
∴∠DAE′=∠B′AE′=∠BAE=30°。
∴AB′與AE在同一直線上,即BF與AB′的交點是G。
設(shè)BF與AE′的交點為H,
則∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG= AG,∴△BAG≌△HAG。
∴。
∴△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積沒有變化。
(1)由四邊形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可證得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF。
(2)由正方形ABCD的面積等于3,即可求得此正方形的邊長,由在△BGE與△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可證得△BGE∽△ABE,由相似三角形的面積比等于相似比的平方,即可求得答案。
(3)由正切函數(shù),求得∠BAE=30°,易證得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′與AE在同一直線上,即BF與AB′的交點是G,然后設(shè)BF與AE′的交點為H,可證得△BAG≌△HAG,從而證得結(jié)論
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結(jié)論有( 。.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有點A、B,且點A表示﹣4,AB=10.
(1)點B表示的有理數(shù)為 .
(2)一只小蟲從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向爬行到點C,點M、N分別是AC、BC的中點.
①若爬行4秒,則M表示數(shù) ;N表示數(shù) ;MN= .
②若爬行16秒,則M表示數(shù) ;線段MN= .
③若爬行t秒,則線段MM= .
發(fā)現(xiàn):點A、B、C在同一直線上,點M、N分別是AC、BC的中點,已知MN=a,則AB= (用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點A2019的坐標為( )
A. (22017,0)B. (22018,0)C. (22020,0)D. (24034,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件,求:
(1)若商場每件襯衫降價10元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1250元,每件襯衫應(yīng)降價多少元?
(3)要使商場平均每天盈利1500元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組就“最想去的漳州5個最美鄉(xiāng)村”隨機調(diào)查了本校部分學(xué)生. 要求每位同學(xué)選擇且只能選擇一個最想去的最美鄉(xiāng)村. 下面是根據(jù)調(diào)查結(jié)果繪制出的尚不完整統(tǒng)計表和統(tǒng)計圖,其中x、y是滿足x<y的正整數(shù).
最美鄉(xiāng)村意向統(tǒng)計表
最美鄉(xiāng)村 | 人數(shù) |
A:龍海埭美村 | 10 |
B:華安官畬村 | 11 |
C:長泰山重村 | 4x |
D:南靖塔下村 | 9 |
E:東山澳角村 | 3y |
最美鄉(xiāng)村意向扇形統(tǒng)計圖
根據(jù)以上信息,解答下列問題:
(1)求x、y的值;
(2)若該校有1200名學(xué)生,請估計“最想去華安官畬村”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題
打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元.打折后,買500件A商品和500件B商品用了9600元,比不打折少花費多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題做如下探究:
(問題背景)
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.小明同學(xué)探究此問題的思路是:將△BCD繞點D逆時針旋轉(zhuǎn)90°到△AED處,點B、C分別落在點A、E處(如圖②),易證點C、A、E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
(簡單應(yīng)用)
(1)在圖①中,若AC=,BC=2,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙O上,,若AB=10,BC=8,求CD的長.
(拓展延伸)
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=a,BC=b(a<b),求CD的長.(用含a,b的代數(shù)式表示).
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,請直接寫出線段PQ與AC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com