如圖,在平面直角坐標(biāo)系中,正方形ABCO的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切.若點A的坐標(biāo)為(0,8),則圓心M的坐標(biāo)為________.

(-4,5)
分析:過M作MN⊥AB于N,連接MA,設(shè)⊙M的半徑是R,根據(jù)正方形性質(zhì)求出OA=AB=BC=CO=8,根據(jù)垂徑定理求出AN,得出M的橫坐標(biāo),在△AMN中,由勾股定理得出關(guān)于R的方程,求出R,即可得出M的縱坐標(biāo).
解答:解:∵四邊形ABCO是正方形,A(0,8),
∴AB=OA=CO=BC=8,
過M作MN⊥AB于N,連接MA,
由垂徑定理得:AN=AB=4,
設(shè)⊙M的半徑是R,則MN=8-R,AM=R,由勾股定理得:AM2=MN2+AN2,
R2=(8-R)2+42
解得:R=5,
∵AN=4,四邊形ABCO是正方形,⊙M于x軸相切,
∴M的橫坐標(biāo)是-4,
即M(-4,5),
故答案為:(-4,5).
點評:本題考查了勾股定理、切線的性質(zhì)、正方形性質(zhì),垂徑定理等知識點,本題綜合性比較強(qiáng),是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案