【題目】如圖,四邊形ABCD中,AB=CD,點(diǎn)E、F、G、H分別是BC、AD、BD、AC的中點(diǎn),猜想四邊形EHFG的形狀并說(shuō)明理由.
【答案】證明見(jiàn)解析
【解析】
首先運(yùn)用三角形中位線(xiàn)定理可得到FG∥AB,HE∥AB,FH∥CD,GE∥DC,從而在根據(jù)平行于同一條直線(xiàn)的兩直線(xiàn)平行得到GE∥FH,GF∥EH,可得到四邊形GFHE是平行四邊形,再運(yùn)用三角形中位線(xiàn)定理證明鄰邊相等,從而證明它是菱形.
∵四邊形ABCD中,點(diǎn)E、F、G、H分別是BC、AD、BD、AC的中點(diǎn),
∴FG∥AB,HE∥AB,FH∥CD,GE∥DC,
∴GE∥FH,GF∥EH(平行于同一條直線(xiàn)的兩直線(xiàn)平行);
∴四邊形GFHE是平行四邊形,
∵四邊形ABCD中,點(diǎn)E、F、G、H分別是BC、AD、BD、AC的中點(diǎn),
∴FG是△ABD的中位線(xiàn),GE是△BCD的中位線(xiàn),
∴GF=AB,GE=CD,
∵AB=CD,
∴GF=GE,
∴四邊形EHFG是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,將邊長(zhǎng)相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的面積為4,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S10的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n-2)×180°.
(1)甲同學(xué)說(shuō),θ能取360°;而乙同學(xué)說(shuō),θ也能取630°.甲、乙的說(shuō)法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說(shuō)明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,求證:∠DHO=∠DCO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),且DE∥BC,AD=2,DB=3,△ADE的面是2,則四邊形BCED的面積是( )
A.4
B.8
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年兩會(huì)提出:隨著城鎮(zhèn)化水平的提高,為了房地產(chǎn)去庫(kù)存,國(guó)家鼓勵(lì)農(nóng)民進(jìn)城買(mǎi)房,可享受政府擔(dān)保免收利息的惠民政策,小王家購(gòu)買(mǎi)了一套學(xué)區(qū)房,首付15萬(wàn)元后,剩余部分貸款,貸款金額按月分期還款,每月還款數(shù)相同,計(jì)劃每月還款y萬(wàn)元,x個(gè)月還清貸款,已知y是x的反比例函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)解析式(關(guān)系式),并求小王家購(gòu)買(mǎi)的學(xué)區(qū)房的總價(jià)是多少萬(wàn)元?
(2)若計(jì)劃80個(gè)月還清貸款,則每月應(yīng)還款多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,圓錐的母線(xiàn)長(zhǎng)6cm,底面半徑是3cm,在B處有一只螞蟻,在AC中點(diǎn)P處有一顆米粒,螞蟻從B爬到P處的最短距離是( )
A.3 cm
B.3 cm
C.9cm
D.6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖Rt△ABC中∠BAC=90°,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得△AFB,連接EF,下列結(jié)論:①△AED≌△AEF;②△ABC的面積等于四邊形AFBD的面積;③BE+DC=DE;④BE2+DC2=DE2;⑤∠DAC=22.5°,其中正確的是( 。
A. ①②④B. ③④⑤C. ①③④D. ①②⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com