【題目】如圖,拋物線與直線交于兩點(diǎn),交軸與兩點(diǎn),連接已知

(1)求拋物線的解析式;

(2)求證:是直角三角形;

(3)軸右側(cè)拋物線上一動(dòng)點(diǎn),連接,過點(diǎn)軸于點(diǎn),問:是否存在點(diǎn)使得以為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1;(2)見解析;(3)存在,滿足條件的點(diǎn)的坐標(biāo)為,

【解析】

1)將點(diǎn)AC的坐標(biāo)代入到拋物線的解析式中,即可求出答案;

2)先將拋物線解析式與直線解析式聯(lián)立求出B點(diǎn)坐標(biāo),然后利用勾股定理求出,然后利用勾股定理的逆定理即可得出結(jié)論;

3)過點(diǎn)軸于,設(shè)點(diǎn)的橫坐標(biāo)為,分四種情況:①若點(diǎn)在點(diǎn)的下方,當(dāng)時(shí);②若點(diǎn)在點(diǎn)的下方,當(dāng)時(shí);③若點(diǎn)在點(diǎn)的上方,當(dāng)時(shí);④若點(diǎn)在點(diǎn)的上方,當(dāng)時(shí),分別進(jìn)行計(jì)算即可.

1)把代入

得:,解得:,

拋物線的解析式為;

2)由題意聯(lián)立

解得:

B點(diǎn)的坐標(biāo)為,

,

是直角三角形;

3)存在點(diǎn)使得以為頂點(diǎn)的三角形與相似.

過點(diǎn)軸于

設(shè)點(diǎn)的橫坐標(biāo)為,由軸右側(cè)可得

,

①若點(diǎn)在點(diǎn)的下方,當(dāng)時(shí),則,

,

,

,

,則

代入,

,

整理得:,

解得:(舍去),(舍去);

②若點(diǎn)在點(diǎn)的下方,當(dāng)時(shí),則,

,

,

,則,

代入,得,

整理得:,

解得:(舍去),

;

③若點(diǎn)在點(diǎn)的上方,當(dāng)時(shí),則,

同理可得:點(diǎn)的坐標(biāo)為;

④若點(diǎn)在點(diǎn)的上方,當(dāng)時(shí),則,

同理可得:點(diǎn)的坐標(biāo)為;

綜上所述:滿足條件的點(diǎn)的坐標(biāo)為,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了“心系雅安”捐款活動(dòng),為了解捐款情況,學(xué)會(huì)生隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)相關(guān)信息,解答下列是問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為    ,圖中m的值是    ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了宣傳一種新產(chǎn)品,在某地先后舉行場產(chǎn)品促銷會(huì),已知該產(chǎn)品每臺(tái)成本為萬元,設(shè)第場產(chǎn)品的銷售量為 (臺(tái)),在銷售過程中獲得以下信息:

信息1:已知第一場銷售產(chǎn)品臺(tái),然后每增加一場,產(chǎn)品就少賣出臺(tái);

信息2:產(chǎn)品的每場銷售單價(jià)(萬元)由基本價(jià)和浮動(dòng)價(jià)兩部分組成,其中基本價(jià)保持不變,第1場--第20場浮動(dòng)價(jià)與銷售場次成正比,第21場--第40場浮動(dòng)價(jià)與銷售場次成反比,經(jīng)過統(tǒng)計(jì),得到如下數(shù)據(jù):

(場)

3

10

25

(萬元)

10.6

12

14.2

1)求之間滿足的函數(shù)關(guān)系式;

2)當(dāng)產(chǎn)品銷售單價(jià)為13萬元時(shí),求銷售場次是第幾場?

3)在這場產(chǎn)品促銷會(huì)中,哪一場獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 軸于 兩點(diǎn),交 軸于點(diǎn) ,直線經(jīng)過點(diǎn)

1)求拋物線的解析式;

2 是直線上方的拋物線上一動(dòng)點(diǎn),求 的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,中點(diǎn),點(diǎn)上的動(dòng)點(diǎn)(不與重合).過,.設(shè)的長度為,的長度和為.則能表示之間的函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,點(diǎn)PAC邊上的一點(diǎn),過點(diǎn)P作與BC平行的直線PQ,交AB于點(diǎn)Q,點(diǎn)D在線段 BC上,連接AD交線段PQ于點(diǎn)E,且,點(diǎn)GBC延長線上,∠ACG的平分線交直線PQ于點(diǎn)F

1)求證:PCPE;

2)當(dāng)P是邊AC的中點(diǎn)時(shí),求證:四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿ABC中,∠CBA=90,∠CAB=50,以AB為直徑作⊙OAC于點(diǎn)D,點(diǎn)E在邊BC上,連結(jié)DE,且∠DEB=80

1)求證:直線ED是⊙O的切線;

2)求證:DE=BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美麗的雪花扮靚了我們可愛的家鄉(xiāng),但高速公路清雪刻不容緩.某高速公路維護(hù)站引進(jìn)甲、乙兩種型號(hào)的清雪車,已知甲型清雪車比乙型清雪車每天多清理路段6千米,甲型清雪車清理90千米與乙型清雪車清理60千米路段所用的時(shí)間相同.

(1)甲型、乙型清雪車每天各清理路段多少千米?

(2)此公路維護(hù)站欲購置甲、乙兩種型號(hào)清雪車共20臺(tái),甲型每臺(tái)30萬元,乙型每臺(tái)15萬元,若在購款不超過360萬元,甲型、乙型都購買的情況下,甲型清雪車最多可購買幾臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AB2,AC,∠ACB45°,D是平面內(nèi)一點(diǎn)且∠ADB30°,則線段CD的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案