【題目】如圖1是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖,乙槽中有一圓柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上),現(xiàn)將甲槽中的水勻速注入乙槽.甲、乙兩個(gè)水槽中水的深度y(cm)與注水時(shí)間x(分)之間的關(guān)系如圖2所示.根據(jù)圖象解答下列問題:
(1)圖2中折線ABC表示槽中水的深度與注水時(shí)間之間的關(guān)系.線段DE表示槽中水的深度與注水時(shí)間之間的關(guān)系.點(diǎn)B的縱坐標(biāo)的實(shí)際意義是
(2)注水多長(zhǎng)時(shí)間,甲、乙兩個(gè)水槽中水的深度相同.
(3)若乙槽底面積為36cm2 , (壁厚不計(jì)),求乙槽中鐵塊的體積.
(4)若乙槽中鐵塊的體積為112cm3 , 則甲槽的底面積是cm2

【答案】
(1)乙;甲;乙槽中鐵塊的高度為14cm
(2)解:設(shè)線段AB、DE的解析式分別為:y1=k1x+b1,y2=k2x+b2,

∵AB經(jīng)過點(diǎn)(0,2)和(4,14),DE經(jīng)過(0,12)和(6,0)

,

解得

,

解得: ,

∴解析式為y=3x+2和y=﹣2x+12,

令3x+2=﹣2x+12,

解得x=2,

∴當(dāng)2分鐘時(shí)兩個(gè)水槽水面一樣高.


(3)解:由圖象知:當(dāng)水槽中沒有沒過鐵塊時(shí)4分鐘水面上升了12cm,即1分鐘上升3cm,

當(dāng)水面沒過鐵塊時(shí),2分鐘上升了5cm,即1分鐘上升2.5cm,

設(shè)鐵塊的底面積為acm2,

則乙水槽中不放鐵塊的體積分別為:(2.5×36)cm3

放了鐵塊的體積為3×(36﹣a)cm3,

∴3×(36﹣a)=2.5×36,

解得a=6,

∴鐵塊的體積為:6×14=84cm3


(4)60
【解析】解:(1)由題意及圖象,得

乙;甲;乙槽中鐵塊的高度為14cm;(4)60cm2

∵鐵塊的體積為112cm3

∴鐵塊的底面積為112÷14=8cm2,

可設(shè)甲槽的底面積為m,乙槽的底面積為n,則根據(jù)前4分鐘和后2分鐘甲槽中流出的水的體積和乙槽中流入的水的體積分別相等列二元一次方程組,

∵“勻速注水”,沒過鐵塊前和沒過鐵塊后注水速度未變,則總水體積不變

,

解得:m=60cm2

所以答案是:60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】健康成年人的心臟全年流過的血液總量為2540000000毫升,將2540000000用科學(xué)記數(shù)法表示應(yīng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)寫出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo);

(3)求P'AO的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的腰長(zhǎng)為2,則底邊a的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)運(yùn)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請(qǐng)用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):7,99,810,它們的眾數(shù)和中位數(shù)分別是(

A.99B.98C.99.5D.98.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面內(nèi)任意一個(gè)四邊形ABCD,現(xiàn)從以下四個(gè)關(guān)系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C 中任取兩個(gè)作為條件,能夠得出這個(gè)四邊形ABCD是平行四邊形的組合是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)籌集資金12.8萬(wàn)元,一次性購(gòu)進(jìn)空調(diào)、彩電共30臺(tái).根據(jù)市場(chǎng)需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤(rùn)不少于1.5萬(wàn)元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見表格.

空調(diào)

彩電

進(jìn)價(jià)(元/臺(tái))

5400

3500

售價(jià)(元/臺(tái))

6100

3900

設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)空調(diào)x臺(tái),空調(diào)和彩電全部銷售后商場(chǎng)獲得的利潤(rùn)為y元.
(1)試寫出y與x的函數(shù)關(guān)系式;
(2)商場(chǎng)有哪幾種進(jìn)貨方案可供選擇?
(3)選擇哪種進(jìn)貨方案,商場(chǎng)獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案