【題目】已知動點從點出發(fā)沿圖1的邊框(邊框拐角處都互相垂直)按的路徑移動,相應的的面積關于移動路程的關系圖象如圖2,若,根據(jù)圖象信息回答下列問題:
(1)圖1中___________.
(2)圖2中___________;___________.
(3)當的面積為2時,求對應的的值.
【答案】(1)3;(2)9,26;(3)2,24,28
【解析】
(1)根據(jù)圖象可得,動點P在AB上運動的路程是3cm,即可得出AB的長;
(2)根據(jù)圖象可得BC=5-3=2 cm,CD=11-5=6 cm,DE=17-11=6 cm,又由AH=2cm,可以計算出△AHP的面積,計算可得m的值,再根據(jù)△AHP的面積得0時,點H、A、P三點共線,從而得出n的值;
(3)根據(jù)△AHP的面積公式得,當的面積為2時,的高為2,根據(jù)圖象上的數(shù)據(jù)計算可得答案,
解:(1)根據(jù)圖象可得,動點P在AB上運動的路程是3cm,
∴AB=3cm.
(2)由圖象可知:BC=5-3=2 cm,CD=11-5=6 cm,DE=17-11=6 cm
當x=11時,的面積y=;
∴m=9
當x=n時,的面積y=0,此時H、A、P三點共線;
∴n=17+9=26
(3)∵
∵的面積為2,則的高為2cm,
此時x=2或x=24或x=28
科目:初中數(shù)學 來源: 題型:
【題目】某文具店計劃購進兩種計算器若購進A計算器10個,B計算器5個,需要1000元:若購進A計算器5個,B計算器3個,需要550元.
(1)購進A、B兩種計算器每個各需多少元?
(2)該商店決定購進這兩種計算器180個,若購進A種計算器的數(shù)量不少于B種計算器數(shù)量的6倍,且不超過B種計算器數(shù)量的8倍,則該商店共有幾種進貨方案?
(3)若銷售每個A計算器可獲利潤20元,每個B計算器可獲利潤30元,在(2)的各種進貨方案中,哪一種方案獲利潤較大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個轉(zhuǎn)盤,轉(zhuǎn)盤被平均分成4等分,即被分成4個大小相等的扇形,4個扇形分別標有數(shù)字2、3、4、6,指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,每次指針落在每個扇形的機會均等(若指針恰好落在分界線上則重轉(zhuǎn)).
(1)若圖中標有“2”的扇形至少繞圓心旋轉(zhuǎn)n度能與標有“3”的扇形的起始位置重合,求n的值;
(2)現(xiàn)有一張電影票,兄弟倆商定通過轉(zhuǎn)盤游戲定輸贏(贏的一方先得).游戲規(guī)則是:姐妹倆各轉(zhuǎn)動一次轉(zhuǎn)盤,兩次轉(zhuǎn)動后,若指針所指扇形上的數(shù)字之和為小于8,則哥哥贏;若指針所指扇形上的數(shù)字之和不小于8,則弟弟贏.這個游戲規(guī)則對雙方公平嗎?請利用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一水池放水,先用一臺抽水機工作一段時間后停止,然后再調(diào)來一臺同型號抽水機,兩臺抽水機同時工作直到抽干.設從開始工作的時間為,剩下的水量為.下面能反映與之間的關系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(-t,0)、B(0,t),其中t>0,點C為OA上一點,OD⊥BC于點D,且∠BCO=45°+∠COD
(1) 求證:BC平分∠ABO
(2) 求的值
(3) 若點P為第三象限內(nèi)一動點,且∠APO=135°,試問AP和BP是否存在某種確定的位置關系?說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
數(shù)學中枚舉法是一種重要歸納法也稱為列舉法、窮舉法,是暴力策略的具體體現(xiàn),又稱為蠻力法.用枚舉法解題時應該注意:
1、常常需要將對象進行恰當分類.
2、使其確定范圍盡可能最小,逐個試驗尋求答案.
正整數(shù)的末尾為5稱為“威武數(shù)”,那么的平方數(shù)為稱為“平武數(shù)”.
例: ,
,
,
,
,
……
由以上的枚舉可以歸納得到的“平武數(shù)”特點是:
①“平武數(shù)”的末兩位數(shù)字是25;
②去掉末兩位數(shù)字25后,剩下部分組成的數(shù)字等于“平武數(shù)”去掉個位數(shù)字5后剩部分組成的數(shù)字與比此數(shù)大1的數(shù)之積.(如例中的括號內(nèi)容)
(1)根據(jù)以上特點我們能夠很快的推出一個四位數(shù)的“平武數(shù)”一共有___________個.
(2)同學們用學過的完全平方公式求證:當“威武數(shù)”為任意二位數(shù)時“平武數(shù)”都滿足以上特點.
(3)已知“平武數(shù)”的首位數(shù)是2且小于六位,又滿足的各位數(shù)字之和與的各位數(shù)字之和相等,求出“平武數(shù)”的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩直線 OM 與 ON 垂直,點 A,B 分別在射線 OM,ON 上移動,BC 平分∠DBO,BC 與∠OAB 的平分線 AC 交于點 C.
(1)若∠BAO=60°,求∠C 的度數(shù);
(2)若∠BAO 的度數(shù)為 x 度,求∠C 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩艘船,現(xiàn)同時由A地順流而下,乙船到B地接到通知,須立即逆流而上到達與A,B兩地在同一直線的C地執(zhí)行任務,甲船繼續(xù)順流航行.已知甲、乙兩船在靜水中的速度都是每小時7.5千米,水流的速度為每小時2.5千米,A,C兩地間的距離為10千米.如果乙船由A地經(jīng)B地再到達C地共用了4小時,問:乙船從B地到達C地時,甲船距離B地多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com